Back to Search
Start Over
Artificial intelligence-based radiomics on computed tomography of lumbar spine in subjects with fragility vertebral fractures.
- Source :
-
Journal of endocrinological investigation [J Endocrinol Invest] 2022 Oct; Vol. 45 (10), pp. 2007-2017. Date of Electronic Publication: 2022 Jun 25. - Publication Year :
- 2022
-
Abstract
- Purpose: There is emerging evidence that radiomics analyses can improve detection of skeletal fragility. In this cross-sectional study, we evaluated radiomics features (RFs) on computed tomography (CT) images of the lumbar spine in subjects with or without fragility vertebral fractures (VFs).<br />Methods: Two-hundred-forty consecutive individuals (mean age 60.4 ± 15.4, 130 males) were evaluated by radiomics analyses on opportunistic lumbar spine CT. VFs were diagnosed in 58 subjects by morphometric approach on CT or XR-ray spine (D4-L4) images. DXA measurement of bone mineral density (BMD) was performed on 17 subjects with VFs.<br />Results: Twenty RFs were used to develop the machine learning model reaching 0.839 and 0.789 of AUROC in the train and test datasets, respectively. After correction for age, VFs were significantly associated with RFs obtained from non-fractured vertebrae indicating altered trabecular microarchitecture, such as low-gray level zone emphasis (LGLZE) [odds ratio (OR) 1.675, 95% confidence interval (CI) 1.215-2.310], gray level non-uniformity (GLN) (OR 1.403, 95% CI 1.023-1.924) and neighboring gray-tone difference matrix (NGTDM) contrast (OR 0.692, 95% CI 0.493-0.971). Noteworthy, no significant differences in LGLZE (p = 0.94), GLN (p = 0.40) and NGDTM contrast (p = 0.54) were found between fractured subjects with BMD T score < - 2.5 SD and those in whom VFs developed in absence of densitometric diagnosis of osteoporosis.<br />Conclusions: Artificial intelligence-based analyses on spine CT images identified RFs associated with fragility VFs. Future studies are needed to test the predictive value of RFs on opportunistic CT scans in identifying subjects with primary and secondary osteoporosis at high risk of fracture.<br /> (© 2022. The Author(s), under exclusive licence to Italian Society of Endocrinology (SIE).)
- Subjects :
- Absorptiometry, Photon methods
Artificial Intelligence
Bone Density
Cross-Sectional Studies
Humans
Lumbar Vertebrae diagnostic imaging
Male
Tomography, X-Ray Computed methods
Osteoporosis complications
Osteoporotic Fractures diagnostic imaging
Spinal Fractures complications
Spinal Fractures diagnostic imaging
Subjects
Details
- Language :
- English
- ISSN :
- 1720-8386
- Volume :
- 45
- Issue :
- 10
- Database :
- MEDLINE
- Journal :
- Journal of endocrinological investigation
- Publication Type :
- Academic Journal
- Accession number :
- 35751803
- Full Text :
- https://doi.org/10.1007/s40618-022-01837-z