Back to Search
Start Over
Azide Photochemistry in Acrylic Copolymers for Ultraviolet Cross-Linkable Pressure-Sensitive Adhesives: Optimization, Debonding-on-Demand, and Chemical Modification.
- Source :
-
ACS applied materials & interfaces [ACS Appl Mater Interfaces] 2022 Jul 06; Vol. 14 (26), pp. 30216-30227. Date of Electronic Publication: 2022 Jun 23. - Publication Year :
- 2022
-
Abstract
- Pressure-sensitive adhesives (PSAs) are usually made from viscoelastic, high-molecular-weight copolymers, which are fine-tuned by adjusting the comonomer ratios, molecular weights, and cross-link densities to optimize the adhesion properties for the desired end-use. To create a lightly cross-linked network, an ultraviolet (UV) photoinitiator can be incorporated. Here, we present the first use of perfluorophenylazide chemistry to control precisely a polyacrylate network for application as a PSA. Upon UV irradiation, the highly reactive nitrene from the azide moiety reacts with nearby molecules through a C-H insertion reaction, resulting in cross-linking via covalent bonding. This approach offers three benefits: (1) a means to optimize adhesive properties without the addition of an external photoinitiator; (2) the ability to switch off the tack adhesion on demand via a high cross-linking density; and (3) a platform for additional chemical modification. A series of poly( n -butyl acrylate- co -2,3,4,5,6-pentafluorobenzyl acrylate) or poly(PFBA- co -BA) copolymers were synthesized and modified post-polymerization into the photo-reactive poly( n -butyl acrylate- co -4-azido-2,3,5,6-tetrafluorobenzyl acrylate) [azide-modified poly(PFBA- co -BA)] with various molar contents. When cast into films, the azide-modified copolymers with a high azide content achieved a very high shear resistance after UV irradiation, whereas the tack and peel adhesion decreased strongly with the increase in azide content, indicating that excessive cross-linking occurred. These materials are thus photo-switchable. However, in the low range of azide content, an optimum probe tack adhesion energy was obtained in films with a 0.3 mol % azide content, where a long stress plateau (indicating good fibrillation) with a high plateau stress was observed. An optimum peel adhesion strength was achieved with 0.5 mol % azide. Thus, the adhesion was finely controlled by the degree of cross-linking of the PSA, as determined by the azide content of the copolymer chain. Finally, as a demonstration of the versatility and advantages of the material platform, we show an azide-aldehyde-amine multicomponent modification of the azide copolymer to make a dye-functionalized film that retains its adhesive properties. This first demonstration of using azide functionality has enormous potential for functional PSA design.
Details
- Language :
- English
- ISSN :
- 1944-8252
- Volume :
- 14
- Issue :
- 26
- Database :
- MEDLINE
- Journal :
- ACS applied materials & interfaces
- Publication Type :
- Academic Journal
- Accession number :
- 35737668
- Full Text :
- https://doi.org/10.1021/acsami.2c07385