Back to Search
Start Over
Invading viral DNA triggers dsRNA synthesis by RNA polymerase II to activate antiviral RNA interference in Drosophila.
- Source :
-
Cell reports [Cell Rep] 2022 Jun 21; Vol. 39 (12), pp. 110976. - Publication Year :
- 2022
-
Abstract
- dsRNA sensing triggers antiviral responses against RNA and DNA viruses in diverse eukaryotes. In Drosophila, Invertebrate iridescent virus 6 (IIV-6), a large DNA virus, triggers production of small interfering RNAs (siRNAs) by the dsRNA sensor Dicer-2. Here, we show that host RNA polymerase II (RNAPII) bidirectionally transcribes specific AT-rich regions of the IIV-6 DNA genome to generate dsRNA. Both replicative and naked IIV-6 genomes trigger production of dsRNA in Drosophila cells, implying direct sensing of invading DNA. Loquacious-PD, a Dicer-2 co-factor essential for the biogenesis of endogenous siRNAs, is dispensable for processing of IIV-6-derived dsRNAs, which suggests that they are distinct. Consistent with this finding, inhibition of the RNAPII co-factor P-TEFb affects the synthesis of endogenous, but not virus-derived, dsRNA. Altogether, our results suggest that a non-canonical RNAPII complex recognizes invading viral DNA to synthesize virus-derived dsRNA, which activates the antiviral siRNA pathway in Drosophila.<br />Competing Interests: Declaration of interests The authors declare no competing interests.<br /> (Copyright © 2022 The Author(s). Published by Elsevier Inc. All rights reserved.)
Details
- Language :
- English
- ISSN :
- 2211-1247
- Volume :
- 39
- Issue :
- 12
- Database :
- MEDLINE
- Journal :
- Cell reports
- Publication Type :
- Academic Journal
- Accession number :
- 35732126
- Full Text :
- https://doi.org/10.1016/j.celrep.2022.110976