Back to Search
Start Over
Temporal and Spatiotemporal Arboviruses Forecasting by Machine Learning: A Systematic Review.
- Source :
-
Frontiers in public health [Front Public Health] 2022 Jun 03; Vol. 10, pp. 900077. Date of Electronic Publication: 2022 Jun 03 (Print Publication: 2022). - Publication Year :
- 2022
-
Abstract
- Arboviruses are a group of diseases that are transmitted by an arthropod vector. Since they are part of the Neglected Tropical Diseases that pose several public health challenges for countries around the world. The arboviruses' dynamics are governed by a combination of climatic, environmental, and human mobility factors. Arboviruses prediction models can be a support tool for decision-making by public health agents. In this study, we propose a systematic literature review to identify arboviruses prediction models, as well as models for their transmitter vector dynamics. To carry out this review, we searched reputable scientific bases such as IEE Xplore, PubMed, Science Direct, Springer Link, and Scopus. We search for studies published between the years 2015 and 2020, using a search string. A total of 429 articles were returned, however, after filtering by exclusion and inclusion criteria, 139 were included. Through this systematic review, it was possible to identify the challenges present in the construction of arboviruses prediction models, as well as the existing gap in the construction of spatiotemporal models.<br />Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.<br /> (Copyright © 2022 Lima, da Silva, Moreno, Cordeiro da Silva, Musah, Aldosery, Dutra, Ambrizzi, Borges, Tunali, Basibuyuk, Yenigün, Massoni, Browning, Jones, Campos, Kostkova, Silva Filho and dos Santos.)
- Subjects :
- Animals
Arbovirus Infections epidemiology
Arbovirus Infections transmission
Arboviruses pathogenicity
Arboviruses physiology
Arthropod Vectors virology
Humans
Models, Statistical
Neglected Diseases epidemiology
Public Health trends
Arbovirus Infections virology
Arboviruses classification
Arthropod Vectors classification
Machine Learning standards
Machine Learning trends
Neglected Diseases virology
Public Health methods
Subjects
Details
- Language :
- English
- ISSN :
- 2296-2565
- Volume :
- 10
- Database :
- MEDLINE
- Journal :
- Frontiers in public health
- Publication Type :
- Report
- Accession number :
- 35719644
- Full Text :
- https://doi.org/10.3389/fpubh.2022.900077