Back to Search
Start Over
Building Efficient CNN Architectures for Histopathology Images Analysis: A Case-Study in Tumor-Infiltrating Lymphocytes Classification.
- Source :
-
Frontiers in medicine [Front Med (Lausanne)] 2022 May 31; Vol. 9, pp. 894430. Date of Electronic Publication: 2022 May 31 (Print Publication: 2022). - Publication Year :
- 2022
-
Abstract
- Background: Deep learning methods have demonstrated remarkable performance in pathology image analysis, but they are computationally very demanding. The aim of our study is to reduce their computational cost to enable their use with large tissue image datasets.<br />Methods: We propose a method called Network Auto-Reduction (NAR) that simplifies a Convolutional Neural Network (CNN) by reducing the network to minimize the computational cost of doing a prediction. NAR performs a compound scaling in which the width, depth, and resolution dimensions of the network are reduced together to maintain a balance among them in the resulting simplified network. We compare our method with a state-of-the-art solution called ResRep. The evaluation is carried out with popular CNN architectures and a real-world application that identifies distributions of tumor-infiltrating lymphocytes in tissue images.<br />Results: The experimental results show that both ResRep and NAR are able to generate simplified, more efficient versions of ResNet50 V2. The simplified versions by ResRep and NAR require 1.32× and 3.26× fewer floating-point operations (FLOPs), respectively, than the original network without a loss in classification power as measured by the Area under the Curve (AUC) metric. When applied to a deeper and more computationally expensive network, Inception V4, NAR is able to generate a version that requires 4× lower than the original version with the same AUC performance.<br />Conclusions: NAR is able to achieve substantial reductions in the execution cost of two popular CNN architectures, while resulting in small or no loss in model accuracy. Such cost savings can significantly improve the use of deep learning methods in digital pathology. They can enable studies with larger tissue image datasets and facilitate the use of less expensive and more accessible graphics processing units (GPUs), thus reducing the computing costs of a study.<br />Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.<br /> (Copyright © 2022 Meirelles, Kurc, Kong, Ferreira, Saltz and Teodoro.)
Details
- Language :
- English
- ISSN :
- 2296-858X
- Volume :
- 9
- Database :
- MEDLINE
- Journal :
- Frontiers in medicine
- Publication Type :
- Academic Journal
- Accession number :
- 35712087
- Full Text :
- https://doi.org/10.3389/fmed.2022.894430