Back to Search Start Over

Polyimide Hybrid Nanocomposites with Controlled Polymer Filling and Polymer-Matrix Interaction.

Authors :
Wang C
Kilic KI
Koerner H
Baur JW
Varshney V
Lionti K
Dauskardt RH
Source :
ACS applied materials & interfaces [ACS Appl Mater Interfaces] 2022 Jun 22; Vol. 14 (24), pp. 28239-28246. Date of Electronic Publication: 2022 Jun 09.
Publication Year :
2022

Abstract

Polyimide hybrid nanocomposites with the polyimide confined at molecular length scales exhibit enhanced fracture resistance with excellent thermal-oxidative stability at low density. Previously, polyimide nanocomposites were fabricated by infiltration of a polyimide precursor into a nanoporous matrix followed by sequential thermally induced imidization and cross-linking of the polyimide under nanometer-scale confinement. However, byproducts formed during imidization became volatile at the cross-linking temperature, limiting the polymer fill level and degrading the nanocomposite fracture resistance. This is solved in the present work with an easier approach where the nanoporous matrix is filled with shorter preimidized polyimide chains that are cross-linked while in the pores to eliminate the need for confined imidization reactions, which produces better results compared to the previous study. In addition, we selected a preimidized polyimide that has a higher chain mobility and a stronger interaction with the matrix pore surface. Consequently, the toughness achieved with un-cross-linked preimidized polyimide chains in this work is equivalent to that achieved with the cross-linking of the previously used polyimide chains and is doubled when preimidized polyimide chains are cross-linked. The increased chain mobility enables more efficient polymer filling and higher polymer fill levels. The higher polymer-pore surface interaction increases the energy dissipation during polyimide molecular bridging, increasing the nanocomposite fracture resistance. The combination of the higher polymer fill and the stronger polymer-surface interaction is shown to provide significant improvements to the nanocomposite fracture resistance and is validated with a molecular bridging model.

Details

Language :
English
ISSN :
1944-8252
Volume :
14
Issue :
24
Database :
MEDLINE
Journal :
ACS applied materials & interfaces
Publication Type :
Academic Journal
Accession number :
35679607
Full Text :
https://doi.org/10.1021/acsami.2c02575