Back to Search Start Over

Cardiac NF-κB Acetylation Increases While Nrf2-Related Gene Expression and Mitochondrial Activity Are Impaired during the Progression of Diabetes in UCD-T2DM Rats.

Authors :
Thorwald MA
Godoy-Lugo JA
Rodriguez R
Stanhope KL
Graham JL
Havel PJ
Forman HJ
Ortiz RM
Source :
Antioxidants (Basel, Switzerland) [Antioxidants (Basel)] 2022 May 09; Vol. 11 (5). Date of Electronic Publication: 2022 May 09.
Publication Year :
2022

Abstract

The onset of type II diabetes increases the heart's susceptibility to oxidative damage because of the associated inflammation and diminished antioxidant response. Transcription factor NF-κB initiates inflammation while Nrf2 controls antioxidant defense. Current evidence suggests crosstalk between these transcription factors that may become dysregulated during type II diabetes mellitus (T2DM) manifestation. The objective of this study was to examine the dynamic changes that occur in both transcription factors and target genes during the progression of T2DM in the heart. Novel UC Davis T2DM (UCD-T2DM) rats at the following states were utilized: (1) lean, control Sprague-Dawley (SD; n = 7), (2) insulin-resistant pre-diabetic UCD-T2DM (Pre; n = 9), (3) 2-week recently diabetic UCD-T2DM (2Wk; n = 9), (4) 3-month diabetic UCD-T2DM (3Mo; n = 14), and (5) 6-month diabetic UCD-T2DM (6Mo; n = 9). NF-κB acetylation increased 2-fold in 3Mo and 6Mo diabetic animals compared to SD and Pre animals. Nox4 protein increased 4-fold by 6Mo compared to SD. Nrf2 translocation increased 82% in Pre compared to SD but fell 47% in 6Mo animals. GCLM protein fell 35% in 6Mo animals compared to Pre. Hmox1 mRNA decreased 45% in 6Mo animals compared to SD. These data suggest that during the progression of T2DM, NF-κB related genes increase while Nrf2 genes are suppressed or unchanged, perpetuating inflammation and a lesser ability to handle an oxidant burden altering the heart's redox state. Collectively, these changes likely contribute to the diabetes-associated cardiovascular complications.

Details

Language :
English
ISSN :
2076-3921
Volume :
11
Issue :
5
Database :
MEDLINE
Journal :
Antioxidants (Basel, Switzerland)
Publication Type :
Academic Journal
Accession number :
35624791
Full Text :
https://doi.org/10.3390/antiox11050927