Back to Search Start Over

Liquid Core Waveguide Cell with In Situ Absorbance Spectroscopy and Coupled to Liquid Chromatography for Studying Light-Induced Degradation.

Authors :
Groeneveld I
Bagdonaite I
Beekwilder E
Ariese F
Somsen GW
van Bommel MR
Source :
Analytical chemistry [Anal Chem] 2022 May 31; Vol. 94 (21), pp. 7647-7654. Date of Electronic Publication: 2022 May 19.
Publication Year :
2022

Abstract

In many areas, studying photostability or the mechanism of photodegradation is of high importance. Conventional methods to do so can be rather time-consuming, laborious, and prone to experimental errors. In this paper we evaluate an integrated and fully automated system for the study of light-induced degradation, comprising a liquid handler, an irradiation source and exposure cell with dedicated optics and spectrograph, and a liquid chromatography (LC) system. A liquid core waveguide (LCW) was used as an exposure cell, allowing efficient illumination of the sample over a 12 cm path length. This cell was coupled to a spectrograph, allowing in situ absorbance monitoring of the exposed sample during irradiation. The LCW is gas-permeable, permitting diffusion of air into the cell during light exposure. This unit was coupled online to LC with diode array detection for immediate and automated analysis of the composition of the light-exposed samples. The analytical performance of the new system was established by assessing linearity, limit of detection, and repeatability of the in-cell detection, sample recovery and carryover, and overall repeatability of light-induced degradation monitoring, using riboflavin as the test compound. The applicability of the system was demonstrated by recording a photodegradation time profile of riboflavin.

Details

Language :
English
ISSN :
1520-6882
Volume :
94
Issue :
21
Database :
MEDLINE
Journal :
Analytical chemistry
Publication Type :
Academic Journal
Accession number :
35587271
Full Text :
https://doi.org/10.1021/acs.analchem.2c00886