Back to Search Start Over

The dissociation of carbon monoxide from hemoglobin intermediate.

Authors :
Samaja M
Rovida E
Niggeler M
Perrella M
Rossi-Bernardi L
Source :
The Journal of biological chemistry [J Biol Chem] 1987 Apr 05; Vol. 262 (10), pp. 4528-33.
Publication Year :
1987

Abstract

To investigate the mechanism of allosteric switching in human hemoglobin, we have studied the dissociation of the ligand (CO) from several intermediate ligation states by a stopped-flow kinetic technique that utilizes competitive binding of CO by microperoxidase. The hemoglobin species investigated include Hb(CO)4, the diliganded symmetrical species (alpha beta-CO)2 and (alpha-CO beta)2, and the di- and monoliganded asymmetrical species (alpha-CO beta-CO)(alpha beta), (alpha-CO beta)(alpha beta-CO), (alpha beta-CO) (alpha beta), and (alpha-CO beta)(alpha beta). They were obtained by rapid reduction with dithionite of the corresponding valence intermediates that in turn were obtained by chromatography or by hybridization. The nature and concentration of the intermediates were determined by isoelectric focusing at -25 degrees C. The study was performed at varying hemoglobin concentrations (0.1, 0.02, and 0.001 mM [heme]), pH (6.0, 7.0, 8.0), with and without inositol hexaphosphate. The results indicate that: (a) hemoglobin concentration in the 0.1-0.02 mM range does not significantly affect the kinetic rates; (b) the alpha chains dissociate CO faster than the beta chains; (c) the symmetrical diliganded intermediates show cooperativity with respect to ligand dissociation that disappears in the presence of inositol hexaphosphate; (d) the monoliganded intermediates dissociate CO faster than the diliganded intermediates; (e) the asymmetrical diliganded intermediates are functionally different from the symmetrical species.

Details

Language :
English
ISSN :
0021-9258
Volume :
262
Issue :
10
Database :
MEDLINE
Journal :
The Journal of biological chemistry
Publication Type :
Academic Journal
Accession number :
3558353