Back to Search Start Over

Flexible 3D Nanonetworked Silica Film as a Polymer-Free Drug-Eluting Stent Platform to Effectively Suppress Tissue Hyperplasia in Rat Esophagus.

Authors :
Jeon E
Kang JM
Bae GH
Zeng CH
Shin S
Lee B
Park W
Park JH
Lee J
Source :
Advanced healthcare materials [Adv Healthc Mater] 2022 Jul; Vol. 11 (14), pp. e2200389. Date of Electronic Publication: 2022 May 22.
Publication Year :
2022

Abstract

Loading and eluting drugs on self-expandable metallic stents (SEMSs) can be challenging in terms of fabrication, mechanical stability, and therapeutic effects. In this study, a flexible 3D nanonetworked silica film (NSF) capable of withstanding mechanical stress during dynamic expansion is constructed to function as a drug delivery platform on an entire SEMS surface. Despite covering a broad curved area, the synthesized NSF is defect-free and thin enough to increase the stent strut diameter (110 µm) by only 0.4 percent (110.45 µm). The hydrophobic modification of the surface enables loading of 4.7 times the sirolimus (SRL) concentration in NSF than Cypher, polymer-coated commercial stent, which is based on the same thickness of coating layer. Furthermore, SRL-loaded NSF exhibits a twofold delay in release compared to the control group without NSF. The SRL-loaded NSF SEMS significantly suppresses stent-induced tissue hyperplasia than the control SEMS in the rat esophagus (all variables, p < 0.05). Thus, the developed NSF is a promising polymer-free drug delivery platform to efficiently treat esophageal stricture.<br /> (© 2022 Wiley-VCH GmbH.)

Details

Language :
English
ISSN :
2192-2659
Volume :
11
Issue :
14
Database :
MEDLINE
Journal :
Advanced healthcare materials
Publication Type :
Academic Journal
Accession number :
35576185
Full Text :
https://doi.org/10.1002/adhm.202200389