Back to Search Start Over

C-COVIDNet: A CNN Model for COVID-19 Detection Using Image Processing.

Authors :
Rajawat N
Hada BS
Meghawat M
Lalwani S
Kumar R
Source :
Arabian journal for science and engineering [Arab J Sci Eng] 2022; Vol. 47 (8), pp. 10811-10822. Date of Electronic Publication: 2022 Apr 30.
Publication Year :
2022

Abstract

COVID-19 has become a global disaster that has disturbed the socioeconomic fabric of the world. Efficient and cost-effective diagnosis methods are very much required for better treatment and eliminating false cases for COVID-19. COVID-19 disease is a type of respiratory syndrome, thus lung X-ray analysis has got the attention for an effective diagnosis. Hence, the proposed study introduces an Image processing based COVID-19 detection model C-COVIDNet, which is trained on a dataset of chest X-ray images belonging to three categories: COVID-19, Pneumonia, and Normal person. Image preprocessing pipeline is used for extracting the region of interest (ROI), so that the required features may be present in the input. This lightweight convolution neural network (CNN) based approach has achieved an accuracy of 97.5% and an F1-score of 97.91%. Model input images are generated in batches using a custom data generator. The performance of C-COVIDNet has outperformed the state-of-the-art. The promising results will surely help in accelerating the development of deep learning-based COVID-19 diagnosis tools using radiography.<br /> (© King Fahd University of Petroleum & Minerals 2022.)

Details

Language :
English
ISSN :
2193-567X
Volume :
47
Issue :
8
Database :
MEDLINE
Journal :
Arabian journal for science and engineering
Publication Type :
Academic Journal
Accession number :
35528505
Full Text :
https://doi.org/10.1007/s13369-022-06841-2