Back to Search Start Over

Catabolic Ornithine Carbamoyltransferase Activity Facilitates Growth of Staphylococcus aureus in Defined Medium Lacking Glucose and Arginine.

Authors :
Reslane I
Halsey CR
Stastny A
Cabrera BJ
Ahn J
Shinde D
Galac MR
Sladek MF
Razvi F
Lehman MK
Bayles KW
Thomas VC
Handke LD
Fey PD
Source :
MBio [mBio] 2022 Jun 28; Vol. 13 (3), pp. e0039522. Date of Electronic Publication: 2022 Apr 27.
Publication Year :
2022

Abstract

Previous studies have found that arginine biosynthesis in Staphylococcus aureus is repressed via carbon catabolite repression (CcpA), and proline is used as a precursor. Unexpectedly, however, robust growth of S. aureus is not observed in complete defined medium lacking both glucose and arginine (CDM-R). Mutants able to grow on agar-containing defined medium lacking arginine (CDM-R) were selected and found to contain mutations within ahrC , encoding the canonical arginine biosynthesis pathway repressor (AhrC), or single nucleotide polymorphisms (SNPs) upstream of the native arginine deiminase (ADI) operon arcA1B1D1C1 . Reverse transcription-PCR (RT-PCR) studies found that mutations within ccpA or ahrC or SNPs identified upstream of arcA1B1D1C1 increased the transcription of both arcB1 and argGH , encoding ornithine carbamoyltransferase and argininosuccinate synthase/lyase, respectively, facilitating arginine biosynthesis. Furthermore, mutations within the AhrC homologue argR2 facilitated robust growth within CDM-R. Complementation with arcB1 or arcA1B1D1C1 , but not argGH , rescued growth in CDM-R. Finally, supplementation of CDM-R with ornithine stimulated growth, as did mutations in genes ( proC and rocA ) that presumably increased the pyrroline-5-carboxylate and ornithine pools. Collectively, these data suggest that the transcriptional regulation of ornithine carbamoyltransferase and, in addition, the availability of intracellular ornithine pools regulate arginine biosynthesis in S. aureus in the absence of glucose. Surprisingly, ~50% of clinical S. aureus isolates were able to grow in CDM-R. These data suggest that S. aureus is selected to repress arginine biosynthesis in environments with or without glucose; however, mutants may be readily selected that facilitate arginine biosynthesis and growth in specific environments lacking arginine. IMPORTANCE Staphylococcus aureus can cause infection in virtually any niche of the human host, suggesting that it has significant metabolic versatility. Indeed, bioinformatic analysis suggests that it has the biosynthetic capability to synthesize all 20 amino acids. Paradoxically, however, it is conditionally auxotrophic for several amino acids, including arginine. Studies in our laboratory are designed to assess the biological function of amino acid auxotrophy in this significant pathogen. This study reveals that the metabolic block repressing arginine biosynthesis in media lacking glucose is the transcriptional repression of ornithine carbamoyltransferase encoded by arcB1 within the native arginine deiminase operon in addition to limited intracellular pools of ornithine. Surprisingly, approximately 50% of S. aureus clinical isolates can grow in media lacking arginine, suggesting that mutations are selected in S. aureus that allow growth in particular niches of the human host.

Details

Language :
English
ISSN :
2150-7511
Volume :
13
Issue :
3
Database :
MEDLINE
Journal :
MBio
Publication Type :
Academic Journal
Accession number :
35475645
Full Text :
https://doi.org/10.1128/mbio.00395-22