Back to Search
Start Over
Standardization of mineral density maps of physiologic and pathologic biominerals in humans using cone-beam CT and micro-CT scanners.
- Source :
-
Dental materials : official publication of the Academy of Dental Materials [Dent Mater] 2022 Jun; Vol. 38 (6), pp. 989-1003. Date of Electronic Publication: 2022 Apr 13. - Publication Year :
- 2022
-
Abstract
- Objectives: The lack of standardized X-ray imaging remains a challenge for comparative studies on spatial scans acquired from different clinic-specific X-ray scanners. The central objectives of this study are: 1) to delineate mineral density (MD) values, and 2) generate spatial MD maps of various physiologic and pathologic biominerals, and 3) propose a standardization protocol within the safe-operating zone of a CT scanner that underpins normalization of absorbed dose to shape and density of tissues.<br />Methods: A systematic approach to propose a standardization protocol for CT imaging in vivo included: 1) estimation of pathologic MD ranges by performing a comparative meta-analysis on 2009-2019 data from the PubMed database; 2) calibration of cone-beam CT (CBCT) and micro-CT scanners with phantoms of known mineral densities (0, 250, 500, 750 and 3000 mg/cc) and shapes (cylinders and polyhedrons); 3) scanning craniofacial bones (N = 5) and dental tissues (N = 5), and ectopic minerals from humans (N = 3 each, pulp, salivary gland, kidney and prostrate stones, and penile and vascular plaques); 4) underscoring the effect of shape-factor (surface area-to-volume ratio) on MD of biominerals.<br />Results: Higher MDs of physiologic and pathologic cortical bones (504-1009 mg/cc) compared to trabecular bone (82-212 mg/cc) were observed. An increase in shape-factor increased the CBCT error in MD measurement and revealed that the scanner resolution is dependent on the absorbed dose and shape-factor of detectable features.<br />Significance: CT scanners should be calibrated with phantoms containing segments of known shape-factors and mineral densities to identify safe-operating zones. The calibrated approach will narrow the gap between length-scale dependent measurements, and will permit spatiotemporal quantitative and reliable detection of pathologies.<br /> (Copyright © 2022 Elsevier Inc. All rights reserved.)
Details
- Language :
- English
- ISSN :
- 1879-0097
- Volume :
- 38
- Issue :
- 6
- Database :
- MEDLINE
- Journal :
- Dental materials : official publication of the Academy of Dental Materials
- Publication Type :
- Academic Journal
- Accession number :
- 35428494
- Full Text :
- https://doi.org/10.1016/j.dental.2022.03.010