Back to Search Start Over

Amino Surface Modification and Fluorescent Labelling of Porous Hollow Organosilica Particles: Optimization and Characterization.

Authors :
Al-Khafaji MA
Gaál A
Jezsó B
Mihály J
Varga Z
Source :
Materials (Basel, Switzerland) [Materials (Basel)] 2022 Apr 06; Vol. 15 (7). Date of Electronic Publication: 2022 Apr 06.
Publication Year :
2022

Abstract

Surface modification of silica nanoparticles with organic functional groups while maintaining colloidal stability remains a synthetic challenge. This work aimed to prepare highly dispersed porous hollow organosilica particles (pHOPs) with amino surface modification. The amino-surface modification of pHOPs was carried out with 3-aminopropyl(diethoxy)methylsilane (APDEMS) under various reaction parameters, and the optimal pHOP-NH <subscript>2</subscript> sample was selected and labelled with fluorescein isothiocyanate (FITC) to achieve fluorescent pHOPs (F-HOPs). The prepared pHOPs were thoroughly characterized by transmission electron microscopy, dynamic light scattering, FT-IR, UV-Vis and fluorescence spectroscopies, and microfluidic resistive pulse sensing. The optimal amino surface modification of pHOPs with APDEMS was at pH 10.2, at 60 °C temperature with 10 min reaction time. The positive Zeta potential of pHOP-NH <subscript>2</subscript> in an acidic environment and the appearance of vibrations characteristic to the surface amino groups on the FT-IR spectra prove the successful surface modification. A red-shift in the absorbance spectrum and the appearance of bands characteristic to secondary amines in the FTIR spectrum of F-HOP confirmed the covalent attachment of FITC to pHOP-NH <subscript>2</subscript> . This study provides a step-by-step synthetic optimization and characterization of fluorescently labelled organosilica particles to enhance their optical properties and extend their applications.

Details

Language :
English
ISSN :
1996-1944
Volume :
15
Issue :
7
Database :
MEDLINE
Journal :
Materials (Basel, Switzerland)
Publication Type :
Academic Journal
Accession number :
35408026
Full Text :
https://doi.org/10.3390/ma15072696