Back to Search Start Over

Phosphate fertilization affects rhizosphere microbiome of maize and sorghum genotypes.

Authors :
Campolino ML
de Paula Lana UG
Gomes EA
Coelho AM
de Sousa SM
Source :
Brazilian journal of microbiology : [publication of the Brazilian Society for Microbiology] [Braz J Microbiol] 2022 Sep; Vol. 53 (3), pp. 1371-1383. Date of Electronic Publication: 2022 Apr 07.
Publication Year :
2022

Abstract

Despite the lower reactivity of natural phosphates compared to soluble fertilizers, their P bioavailability can increase over the cultivation years, due to the physicochemical processes and the activity of soil microbiota. Therefore, this work aimed to evaluate the α and β diversity of the rhizosphere microbiota of maize and sorghum genotypes grown under different sources and doses of phosphate fertilizers. Four commercial maize and four sorghum genotypes were grown under field conditions with three levels of triple superphosphate (TSP) and two types of rock phosphate sources: phosphorite (RockP) and bayóvar (RP) during two seasons. Maize and sorghum presented a significant difference on the genetic β diversity of both rhizosferic bacterial and arbuscular mycorrhizal fungi. Moreover, P doses within each phosphate source formed two distinct groups for maize and sorghum, and six bacterial phyla were identified in both crops with significant difference in the relative abundance of Firmicutes and Proteobacteria. It was observed that RockP fertilization increased Firmicutes population while Proteobacteria was the most abundant phylum after TSP fertilization in maize. In sorghum, a significant impact of fertilization was observed on the Acidobacteria and Proteobacteria phyla. TSP fertilization increased the Acidobacteria population compared to no fertilized (P0) and RockP while Proteobacteria abundance in RockP was reduced compared to P0 and TSP, indicating a shift toward a more copiotrophic community. Our results suggested that the reactivity of P source is the predominant factor in bacterial community' structures in the maize and sorghum rhizosphere from the evaluated genotypes, followed by P source.<br /> (© 2022. The Author(s) under exclusive licence to Sociedade Brasileira de Microbiologia.)

Details

Language :
English
ISSN :
1678-4405
Volume :
53
Issue :
3
Database :
MEDLINE
Journal :
Brazilian journal of microbiology : [publication of the Brazilian Society for Microbiology]
Publication Type :
Academic Journal
Accession number :
35391636
Full Text :
https://doi.org/10.1007/s42770-022-00747-9