Back to Search
Start Over
Whole-transcriptome RNA sequencing revealed the roles of chitin-related genes in the eyestalk abnormality of a novel mud crab hybrid (Scylla serrata ♀ × S. paramamosain ♂).
- Source :
-
International journal of biological macromolecules [Int J Biol Macromol] 2022 May 31; Vol. 208, pp. 611-626. Date of Electronic Publication: 2022 Mar 26. - Publication Year :
- 2022
-
Abstract
- Chitin is a kind of insoluble structural polysaccharide and plays different roles in different species. In crustaceans, it forms the structural components in the exoskeleton. In our previous studies, novel mud crab hybrids have been produced from the interspecific hybridization of Scylla serrata ♀ × S. paramamosain ♂. Some of the hybrid crabs have been found to be morphologically (eyestalk) abnormal, but the genetic mechanism remains unknown. To address this question, we performed whole-transcriptome RNA sequencing on the control group (normal hybrids), abnormal hybrids, and S. paramamosain to uncover the genetic basis underlying this morphological abnormality. A total of 695 mRNAs, 10 miRNAs, 44 circRNAs, and 1957 lncRNAs were differentially expressed between normal and abnormal hybrids. Several differentially expressed genes (DEGs) associated with chitin and cuticle metabolism were identified, including chitin synthase, chitinase, chitin deacetylase, β-N-acetylglucosaminidase, β-1,4-endoglucanase, N-alpha-acetyltransferase, cuticle proprotein, early cuticle protein, and arthrodial cuticle protein. Functional analysis showed that DE miRNAs, DE circRNAs, DE lncRNAs, and lncRNA/circRNA-miRNA-mRNA network were enriched in pathways related to the amino acid, carbohydrate, and glycogen metabolism. Considering the importance of the chitin and cuticle in exoskeleton formation, it can be concluded that the changes in the chitin and cuticle biosynthesis might have caused the eyestalk abnormality in hybrid crabs. These findings can lay the solid foundation for a better understanding of the important roles of chitin and cuticle related genes and the development of hybridization techniques in crustaceans.<br /> (Copyright © 2022 Elsevier B.V. All rights reserved.)
Details
- Language :
- English
- ISSN :
- 1879-0003
- Volume :
- 208
- Database :
- MEDLINE
- Journal :
- International journal of biological macromolecules
- Publication Type :
- Academic Journal
- Accession number :
- 35351543
- Full Text :
- https://doi.org/10.1016/j.ijbiomac.2022.03.135