Back to Search Start Over

Biomechanical modelling of the pelvic system: improving the accuracy of the location of neoplasms in MRI-TRUS fusion prostate biopsy.

Authors :
Qasim M
Puigjaner D
Herrero J
López JM
Olivé C
Fortuny G
Garcia-Bennett J
Source :
BMC cancer [BMC Cancer] 2022 Mar 28; Vol. 22 (1), pp. 338. Date of Electronic Publication: 2022 Mar 28.
Publication Year :
2022

Abstract

Background: An accurate knowledge of the relocation of prostate neoplasms during biopsy is of great importance to reduce the number of false negative results. Prostate neoplasms are visible in magnetic resonance images (MRI) but it is difficult for the practitioner to locate them at the time of performing a transrectal ultrasound (TRUS) guided biopsy. In this study, we present a new methodology, based on simulation, that predicts both prostate deformation and lesion migration during the biopsy.<br />Methods: A three-dimensional (3-D) anatomy model of the pelvic region, based on medical images, is constructed. A finite element (FE) numerical simulation of the organs motion and deformation as a result of the pressure exerted by the TRUS probe is carried out using the Code-Aster open-source computer software. Initial positions of potential prostate lesions prior to biopsy are taken into consideration and the final location of each lesion is targeted in the FE simulation output.<br />Results: Our 3-D FE simulations show that the effect of the pressure exerted by the TRUS probe is twofold as the prostate experiences both a motion and a deformation of its original shape. We targeted the relocation of five small prostate lesions when the TRUS probe exerts a force of 30 N on the rectum inner wall. The distance travelled by these lesions ranged between 5.6 and 13.9 mm.<br />Conclusions: Our new methodology can help to predict the location of neoplasms during a prostate biopsy but further studies are needed to validate our results. Moreover, the new methodology is completely developed on open-source software, which means that its implementation would be affordable to all healthcare providers.<br /> (© 2022. The Author(s).)

Details

Language :
English
ISSN :
1471-2407
Volume :
22
Issue :
1
Database :
MEDLINE
Journal :
BMC cancer
Publication Type :
Academic Journal
Accession number :
35351051
Full Text :
https://doi.org/10.1186/s12885-022-09432-4