Back to Search Start Over

Automated Tissue Strain Calculations Using Harris Corner Detection.

Authors :
Elliott J
Khandare S
Butt AA
Smallcomb M
Vidt ME
Simon JC
Source :
Annals of biomedical engineering [Ann Biomed Eng] 2022 May; Vol. 50 (5), pp. 564-574. Date of Electronic Publication: 2022 Mar 25.
Publication Year :
2022

Abstract

The elastic modulus, or slope of the stress-strain curve, is an important metric for evaluating tissue functionality, particularly for load-bearing tissues such as tendon. The applied force can be tracked directly from a mechanical testing system and converted to stress using the tissue cross-sectional area; however, strain can only be calculated in post-processing by tracking tissue displacement from video collected during mechanical testing. Manual tracking of Verhoeff stain lines pre-marked on the tissue is time-consuming and highly dependent upon the user. This paper details the development and testing of an automated processing method for strain calculations using Harris corner detection. The automated and manual methods were compared in a dataset consisting of 97 rat tendons (48 Achilles tendons, 49 supraspinatus tendons), divided into ten subgroups for evaluating the effects of different therapies on tendon mechanical properties. The comparison showed that average percent differences between the approaches were 0.89% and -2.10% for Achilles and supraspinatus tendons, respectively. The automated approach reduced processing time by 83% and produced similar results to the manual method when comparing the different subgroups. This automated approach to track tissue displacements and calculate elastic modulus improves post-processing time while simultaneously minimizing user dependency.<br /> (© 2022. The Author(s) under exclusive licence to Biomedical Engineering Society.)

Details

Language :
English
ISSN :
1573-9686
Volume :
50
Issue :
5
Database :
MEDLINE
Journal :
Annals of biomedical engineering
Publication Type :
Academic Journal
Accession number :
35334018
Full Text :
https://doi.org/10.1007/s10439-022-02946-9