Back to Search Start Over

Novel Dormancy Mechanism of Castration Resistance in Bone Metastatic Prostate Cancer Organoids.

Authors :
Lee S
Mendoza TR
Burner DN
Muldong MT
Wu CCN
Arreola-Villanueva C
Zuniga A
Greenburg O
Zhu WY
Murtadha J
Koutouan E
Pineda N
Pham H
Kang SG
Kim HT
Pineda G
Lennon KM
Cacalano NA
Jamieson CHM
Kane CJ
Kulidjian AA
Gaasterland T
Jamieson CAM
Source :
International journal of molecular sciences [Int J Mol Sci] 2022 Mar 16; Vol. 23 (6). Date of Electronic Publication: 2022 Mar 16.
Publication Year :
2022

Abstract

Advanced prostate cancer (PCa) patients with bone metastases are treated with androgen pathway directed therapy (APDT). However, this treatment invariably fails and the cancer becomes castration resistant. To elucidate resistance mechanisms and to provide a more predictive pre-clinical research platform reflecting tumor heterogeneity, we established organoids from a patient-derived xenograft (PDX) model of bone metastatic prostate cancer, PCSD1. APDT-resistant PDX-derived organoids (PDOs) emerged when cultured without androgen or with the anti-androgen, enzalutamide. Transcriptomics revealed up-regulation of neurogenic and steroidogenic genes and down-regulation of DNA repair, cell cycle, circadian pathways and the severe acute respiratory syndrome (SARS)-CoV-2 host viral entry factors, ACE2 and TMPRSS2. Time course analysis of the cell cycle in live cells revealed that enzalutamide induced a gradual transition into a reversible dormant state as shown here for the first time at the single cell level in the context of multi-cellular, 3D living organoids using the Fucci2BL fluorescent live cell cycle tracker system. We show here a new mechanism of castration resistance in which enzalutamide induced dormancy and novel basal-luminal-like cells in bone metastatic prostate cancer organoids. These PDX organoids can be used to develop therapies targeting dormant APDT-resistant cells and host factors required for SARS-CoV-2 viral entry.

Details

Language :
English
ISSN :
1422-0067
Volume :
23
Issue :
6
Database :
MEDLINE
Journal :
International journal of molecular sciences
Publication Type :
Academic Journal
Accession number :
35328625
Full Text :
https://doi.org/10.3390/ijms23063203