Back to Search
Start Over
Dead but Not Forgotten: How Extracellular DNA, Moisture, and Space Modulate the Horizontal Transfer of Extracellular Antibiotic Resistance Genes in Soil.
- Source :
-
Applied and environmental microbiology [Appl Environ Microbiol] 2022 Apr 12; Vol. 88 (7), pp. e0228021. Date of Electronic Publication: 2022 Mar 24. - Publication Year :
- 2022
-
Abstract
- Antibiotic-resistant bacteria and the spread of antibiotic resistance genes (ARGs) pose a serious risk to human and veterinary health. While many studies focus on the movement of live antibiotic-resistant bacteria to the environment, it is unclear whether extracellular ARGs (eARGs) from dead cells can transfer to live bacteria to facilitate the evolution of antibiotic resistance in nature. Here, we use eARGs from dead, antibiotic-resistant Pseudomonas stutzeri cells to track the movement of eARGs to live P. stutzeri cells via natural transformation, a mechanism of horizontal gene transfer involving the genomic integration of eARGs. In sterile, antibiotic-free agricultural soil, we manipulated the eARG concentration, soil moisture, and proximity to eARGs. We found that transformation occurred in soils inoculated with just 0.25 μg of eDNA g <superscript>-1</superscript> soil, indicating that even low concentrations of soil eDNA can facilitate transformation (previous estimates suggested ∼2 to 40 μg eDNA g <superscript>-1</superscript> soil). When eDNA was increased to 5 μg g <superscript>-1</superscript> soil, there was a 5-fold increase in the number of antibiotic-resistant P. stutzeri cells. We found that eARGs were transformed under soil moistures typical of terrestrial systems (5 to 30% gravimetric water content) but inhibited at very high soil moistures (>30%). Overall, this work demonstrates that dead bacteria and their eARGs are an overlooked path to antibiotic resistance. More generally, the spread of eARGs in antibiotic-free soil suggests that transformation allows genetic variants to establish in the absence of antibiotic selection and that the soil environment plays a critical role in regulating transformation. IMPORTANCE Bacterial death can release eARGs into the environment. Agricultural soils can contain upwards of 10 <superscript>9</superscript> ARGs g <superscript>-1</superscript> soil, which may facilitate the movement of eARGs from dead to live bacteria through a mechanism of horizontal gene transfer called natural transformation. Here, we track the spread of eARGs from dead, antibiotic-resistant Pseudomonas stutzeri cells to live antibiotic-susceptible P. stutzeri cells in sterile agricultural soil. Transformation increased with the abundance of eARGs and occurred in soils ranging from 5 to 40% gravimetric soil moisture but was lowest in wet soils (>30%). Transformants appeared in soil after 24 h and persisted for up to 15 days even when eDNA concentrations were only a fraction of those found in field soils. Overall, our results show that natural transformation allows eARGs to spread and persist in antibiotic-free soils and that the biological activity of eDNA after bacterial death makes environmental eARGs a public health concern.
Details
- Language :
- English
- ISSN :
- 1098-5336
- Volume :
- 88
- Issue :
- 7
- Database :
- MEDLINE
- Journal :
- Applied and environmental microbiology
- Publication Type :
- Academic Journal
- Accession number :
- 35323025
- Full Text :
- https://doi.org/10.1128/aem.02280-21