Back to Search Start Over

In vivo prime editing of a metabolic liver disease in mice.

Authors :
Böck D
Rothgangl T
Villiger L
Schmidheini L
Matsushita M
Mathis N
Ioannidi E
Rimann N
Grisch-Chan HM
Kreutzer S
Kontarakis Z
Kopf M
Thöny B
Schwank G
Source :
Science translational medicine [Sci Transl Med] 2022 Mar 16; Vol. 14 (636), pp. eabl9238. Date of Electronic Publication: 2022 Mar 16.
Publication Year :
2022

Abstract

Prime editing is a highly versatile CRISPR-based genome editing technology that works without DNA double-strand break formation. Despite rapid technological advances, in vivo application for the treatment of genetic diseases remains challenging. Here, we developed a size-reduced Sp Cas9 prime editor (PE) lacking the RNaseH domain (PE2 <superscript>Δ RnH </superscript> ) and an intein-split construct (PE2 p.1153) for adeno-associated virus-mediated delivery into the liver. Editing efficiencies reached 15% at the Dnmt1 locus and were further elevated to 58% by delivering unsplit PE2 <superscript>Δ RnH </superscript> via human adenoviral vector 5 (AdV). To provide proof of concept for correcting a genetic liver disease, we used the AdV approach for repairing the disease-causing Pah <superscript>enu2</superscript> mutation in a mouse model of phenylketonuria (PKU) via prime editing. Average correction efficiencies of 11.1% (up to 17.4%) in neonates led to therapeutic reduction of blood phenylalanine, without inducing detectable off-target mutations or prolonged liver inflammation. Although the current in vivo prime editing approach for PKU has limitations for clinical application due to the requirement of high vector doses (7 × 10 <superscript>14</superscript> vg/kg) and the induction of immune responses to the vector and the PE, further development of the technology may lead to curative therapies for PKU and other genetic liver diseases.

Details

Language :
English
ISSN :
1946-6242
Volume :
14
Issue :
636
Database :
MEDLINE
Journal :
Science translational medicine
Publication Type :
Academic Journal
Accession number :
35294257
Full Text :
https://doi.org/10.1126/scitranslmed.abl9238