Back to Search
Start Over
Toward fully automated UED operation using two-stage machine learning model.
- Source :
-
Scientific reports [Sci Rep] 2022 Mar 10; Vol. 12 (1), pp. 4240. Date of Electronic Publication: 2022 Mar 10. - Publication Year :
- 2022
-
Abstract
- To demonstrate the feasibility of automating UED operation and diagnosing the machine performance in real time, a two-stage machine learning (ML) model based on self-consistent start-to-end simulations has been implemented. This model will not only provide the machine parameters with adequate precision, toward the full automation of the UED instrument, but also make real-time electron beam information available as single-shot nondestructive diagnostics. Furthermore, based on a deep understanding of the root connection between the electron beam properties and the features of Bragg-diffraction patterns, we have applied the hidden symmetry as model constraints, successfully improving the accuracy of energy spread prediction by a factor of five and making the beam divergence prediction two times faster. The capability enabled by the global optimization via ML provides us with better opportunities for discoveries using near-parallel, bright, and ultrafast electron beams for single-shot imaging. It also enables directly visualizing the dynamics of defects and nanostructured materials, which is impossible using present electron-beam technologies.<br /> (© 2022. The Author(s).)
Details
- Language :
- English
- ISSN :
- 2045-2322
- Volume :
- 12
- Issue :
- 1
- Database :
- MEDLINE
- Journal :
- Scientific reports
- Publication Type :
- Academic Journal
- Accession number :
- 35273341
- Full Text :
- https://doi.org/10.1038/s41598-022-08260-7