Back to Search Start Over

Fast-decaying plant litter enhances soil carbon in temperate forests but not through microbial physiological traits.

Authors :
Craig ME
Geyer KM
Beidler KV
Brzostek ER
Frey SD
Stuart Grandy A
Liang C
Phillips RP
Source :
Nature communications [Nat Commun] 2022 Mar 09; Vol. 13 (1), pp. 1229. Date of Electronic Publication: 2022 Mar 09.
Publication Year :
2022

Abstract

Conceptual and empirical advances in soil biogeochemistry have challenged long-held assumptions about the role of soil micro-organisms in soil organic carbon (SOC) dynamics; yet, rigorous tests of emerging concepts remain sparse. Recent hypotheses suggest that microbial necromass production links plant inputs to SOC accumulation, with high-quality (i.e., rapidly decomposing) plant litter promoting microbial carbon use efficiency, growth, and turnover leading to more mineral stabilization of necromass. We test this hypothesis experimentally and with observations across six eastern US forests, using stable isotopes to measure microbial traits and SOC dynamics. Here we show, in both studies, that microbial growth, efficiency, and turnover are negatively (not positively) related to mineral-associated SOC. In the experiment, stimulation of microbial growth by high-quality litter enhances SOC decomposition, offsetting the positive effect of litter quality on SOC stabilization. We suggest that microbial necromass production is not the primary driver of SOC persistence in temperate forests. Factors such as microbial necromass origin, alternative SOC formation pathways, priming effects, and soil abiotic properties can strongly decouple microbial growth, efficiency, and turnover from mineral-associated SOC.<br /> (© 2022. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.)

Details

Language :
English
ISSN :
2041-1723
Volume :
13
Issue :
1
Database :
MEDLINE
Journal :
Nature communications
Publication Type :
Academic Journal
Accession number :
35264580
Full Text :
https://doi.org/10.1038/s41467-022-28715-9