Back to Search Start Over

Synthesis and characterization of new functionalized chitosan and its antimicrobial and in-vitro release behavior from topical gel.

Authors :
Mohamed AE
Elgammal WE
Eid AM
Dawaba AM
Ibrahim AG
Fouda A
Hassan SM
Source :
International journal of biological macromolecules [Int J Biol Macromol] 2022 May 15; Vol. 207, pp. 242-253. Date of Electronic Publication: 2022 Mar 03.
Publication Year :
2022

Abstract

Recently, chitosan and its derivatives have been gaining more attention due to their high integration into various biomedical applications. Herein, a new chitosan derivative was prepared by linking the chitosan (Cs) with a novel heterocyclic compound, Benzoimidazolyl-thiadiazole (BzimTD) to form Cs-BzimTD. The synthesis of the new chitosan derivative was confirmed by Fourier-Transform Infrared (FT-IR) spectroscopy, proton nuclear magnetic resonance ( <superscript>1</superscript> H NMR), thermogravimetric (TGA-DTG) analysis, elemental analysis, and UV-Visible spectrophotometer. Data showed the high efficacy of functionalized Cs-BzimTD to inhibit the growth of pathogenic microbes, Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa, and Candida albicans, with inhibition zones of 15.3 ± 0.6 - 9.2 ± 0.3 mm. Also, Cs-BzimTD was applied in a topical gel formulation by using two different polymers, Carbopol 940 (CP) and Carboxymethyl Cellulose (CMC) to form three gel formulations: Cs-BzimTD-CP, Cs-BzimTD-CMC, and Cs-BzimTD-CP-CMC. The new gels were checked for physical appearance, viscosity, Cs-BzimTD release, pH, spread-ability, and drug content. The results showed that all formulations were clear, transparent, and homogeneous with non-irritant pH values for skin (6.4 - 6.8). The spread-ability was found in the range of 7.1 - 9.4 g.cm/s. The Cs-BzimTD-CP formula showed the maximal Cs-BzimTD content percentage (86.5%) and the Cs-BzimTD release varied from 89.9 to 81.6% after 8 h depending on the gel formulation, with a maximum release achieved for Cs-BzimTD-CMC.<br /> (Copyright © 2022 Elsevier B.V. All rights reserved.)

Details

Language :
English
ISSN :
1879-0003
Volume :
207
Database :
MEDLINE
Journal :
International journal of biological macromolecules
Publication Type :
Academic Journal
Accession number :
35247429
Full Text :
https://doi.org/10.1016/j.ijbiomac.2022.02.173