Back to Search
Start Over
ClpP inhibitors are produced by a widespread family of bacterial gene clusters.
- Source :
-
Nature microbiology [Nat Microbiol] 2022 Mar; Vol. 7 (3), pp. 451-462. Date of Electronic Publication: 2022 Mar 04. - Publication Year :
- 2022
-
Abstract
- The caseinolytic protease (ClpP) is part of a highly conserved proteolytic complex whose disruption can lead to antibacterial activity but for which few specific inhibitors have been discovered. Specialized metabolites produced by bacteria have been shaped by evolution for specific functions, making them a potential source of selective ClpP inhibitors. Here, we describe a target-directed genome mining strategy for discovering ClpP-interacting compounds by searching for biosynthetic gene clusters that contain duplicated copies of ClpP as putative antibiotic resistance genes. We identify a widespread family of ClpP-associated clusters that are known to produce pyrrolizidine alkaloids but whose connection to ClpP has never been made. We show that previously characterized molecules do not affect ClpP function but are shunt metabolites derived from the genuine product of these gene clusters, a reactive covalent ClpP inhibitor. Focusing on one such cryptic gene cluster from Streptomyces cattleya, we identify the relevant inhibitor, which we name clipibicyclene, and show that it potently and selectively inactivates ClpP. Finally, we solve the crystal structure of clipibicyclene-modified Escherichia coli ClpP. Clipibicyclene's discovery reveals the authentic function of a family of natural products whose specificity for ClpP and abundance in nature illuminate the role of eco-evolutionary forces during bacterial competition.<br /> (© 2022. The Author(s), under exclusive licence to Springer Nature Limited.)
- Subjects :
- Anti-Bacterial Agents chemistry
Anti-Bacterial Agents pharmacology
Drug Resistance, Microbial
Escherichia coli genetics
Escherichia coli metabolism
Genes, Bacterial genetics
Multigene Family
Peptide Hydrolases metabolism
Endopeptidase Clp chemistry
Endopeptidase Clp genetics
Protease Inhibitors pharmacology
Subjects
Details
- Language :
- English
- ISSN :
- 2058-5276
- Volume :
- 7
- Issue :
- 3
- Database :
- MEDLINE
- Journal :
- Nature microbiology
- Publication Type :
- Academic Journal
- Accession number :
- 35246663
- Full Text :
- https://doi.org/10.1038/s41564-022-01073-4