Back to Search
Start Over
[Soil enzyme stoichiometry revealed the changes of soil microbial carbon and phosphorus limitation along an elevational gradient in a Pinus taiwanensis forest of Wuyi Mountains, Southeast China].
- Source :
-
Ying yong sheng tai xue bao = The journal of applied ecology [Ying Yong Sheng Tai Xue Bao] 2022 Jan; Vol. 33 (1), pp. 33-41. - Publication Year :
- 2022
-
Abstract
- Understanding changes in soil enzyme activities and ecoenzymatic stoichiometry is important for assessing soil nutrient availability and microbial nutrient limitation in mountain ecosystems. However, the variations of soil microbial nutrient limitation across elevational gradients and its driving factors in subtropical mountain forests are still unclear. In this study, we measured soil properties, microbial biomass, and enzyme activities related to carbon (C), nitrogen (N), and phosphorus (P) cycling in Pinus taiwanensis forests at different altitudes of Wuyi Mountains. By analyzing the enzyme stoichiometric ratio, vector length (VL), and vector angle (VA), the relative energy and nutrient limitation of soil microorganisms and its key regulatory factors were explored. The results showed that β-glucosaminidase (BG) activities increased along the elevational gradient, while the activities of β-N-acetyl glucosaminidase (NAG), leucine aminopeptidase (LAP), acid phosphatase (AcP) and (NAG+LAP)/microbial biomass carbon (MBC) and AcP/MBC showed the opposite trend. Enzyme C/N, enzyme C/P, enzyme N/P, and VL were enhanced with increasing elevation, while VA decreased, indicating a higher degree of microbial P limitation at low elevation and higher C limitation at high elevation. In addition, our results suggested that dissolved organic carbon and microbial biomass phosphorus are critical factors affecting the relative energy and nutrient limitation of soil microorganisms at different elevations. The results would provide a theoretical basis for the responses of soil carbon, nitrogen, and phosphorus availability as well as the relative limitation of microbial energy and nutrition to elevational gradients, and improve our understanding of soil biogeochemical cycle process in subtropical montane forest ecosystems.
Details
- Language :
- Chinese
- ISSN :
- 1001-9332
- Volume :
- 33
- Issue :
- 1
- Database :
- MEDLINE
- Journal :
- Ying yong sheng tai xue bao = The journal of applied ecology
- Publication Type :
- Academic Journal
- Accession number :
- 35224923
- Full Text :
- https://doi.org/10.13287/j.1001-9332.202201.033