Back to Search
Start Over
A sensitive and rapid bioanalytical method for the quantitative determination of luliconazole in rabbit eye tissues using UPLC-MS/MS assay.
- Source :
-
Journal of chromatography. B, Analytical technologies in the biomedical and life sciences [J Chromatogr B Analyt Technol Biomed Life Sci] 2022 Apr 01; Vol. 1194, pp. 123173. Date of Electronic Publication: 2022 Feb 22. - Publication Year :
- 2022
-
Abstract
- Luliconazole (LCZ) is a novel antifungal imidazole with broad-spectrum and high susceptibility of Aspergillus and Fusarium are the dominant species of fungal keratitis, may potentially be a new medical treatment option for ocular fungal infection. To evaluate LCZ distribution in ocular tissues after topical application for the development of ophthalmic delivery system, it is important to have a bioanalytical method for measuring the drug concentrations in different ocular tissues and aqueous humor (AH). A selective and sensitive ultrahigh performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS) method was developed for the quantification of LCZ in rabbit ocular tissues, including conjunctiva, cornea, AH, iris, lens, vitreous humor (VH), retinal choroid and sclera, using lanoconazole as internal standard (IS). Chromatographic separation was achieved on a Xterra MS, C18 column (2.1 × 50 mm, 3.5 μm) using mobile phase with formic acid solution (0.2%, v/v): acetonitrile (50:50, v/v) at a flow rate of 0.2 ml/min, and the run time was 2.5 min. Detection was performed using the transitions 354.1 → 150.3 m/z for LCZ and 320.1 → 150.3 m/z for IS by positive ion electrospray ionization in multiple reaction monitoring (MRM) mode. Method validation was conducted in accordance with U.S. Food and Drug Administration's regulatory guidelines for bioanalytical method validation. The calibration curves were linear over the concentration range from 2.80 ng/ml to 2038 ng/ml for conjunctiva, cornea and sclera, 2.09 ng/ml to 1019 ng/ml for AH, 2.09 ng/ml to 509.5 ng/ml for iris, 2.09 ng/ml to 203.8 ng/ml for retinal choroid and VH, 2.04 ng/ml to 101.9 ng/ml for lens, with all the squared correlation coefficients (r <superscript>2</superscript> ) more than 0.99. The accuracy of the method was within the acceptable limit of 89.34%∼112.78% at the lower limit of quantification and other concentrations, Inter-day and intra-day precision values, expressed in terms of RSD (%), in all tissues were within 15% at all concentrations. The mean recoveries of LCZ in rabbit ocular tissues was 84.85%∼100.52%. No interference was found due to matrix components. Luliconazole was stable during the stability studies, including autosampler stability, benchtop stability, freeze/thaw stability and long-term stability. The method was successfully applied to the ocular pharmacokinetic and tissues distribution studies of LCZ in rabbit after topical administration of LCZ ophthalmic drug delivery system.<br /> (Copyright © 2022 The Authors. Published by Elsevier B.V. All rights reserved.)
- Subjects :
- Administration, Topical
Animals
Antifungal Agents administration & dosage
Aspergillus drug effects
Aspergillus growth & development
Eye Diseases microbiology
Fusarium drug effects
Fusarium growth & development
Humans
Imidazoles administration & dosage
Rabbits
Sensitivity and Specificity
Antifungal Agents analysis
Chromatography, High Pressure Liquid methods
Eye chemistry
Eye Diseases drug therapy
Imidazoles analysis
Tandem Mass Spectrometry methods
Subjects
Details
- Language :
- English
- ISSN :
- 1873-376X
- Volume :
- 1194
- Database :
- MEDLINE
- Journal :
- Journal of chromatography. B, Analytical technologies in the biomedical and life sciences
- Publication Type :
- Academic Journal
- Accession number :
- 35219088
- Full Text :
- https://doi.org/10.1016/j.jchromb.2022.123173