Back to Search Start Over

Landscape and vegetation traits of urban green space can predict local surface temperature.

Authors :
Chen D
Zhang F
Zhang M
Meng Q
Jim CY
Shi J
Tan ML
Ma X
Source :
The Science of the total environment [Sci Total Environ] 2022 Jun 15; Vol. 825, pp. 154006. Date of Electronic Publication: 2022 Feb 19.
Publication Year :
2022

Abstract

Societal and technological advances have triggered demands to improve urban environmental quality. Urban green space (UGS) can provide effective cooling service and thermal comfort to alleviate warming impacts. We investigated the relative influence of a comprehensive spectrum of UGS landscape and vegetation factors on surface temperature in arid Urumqi city in northwest China. Built-up area range was extracted from Luojia 1-01 (LJ1-01) satellite data, and within this range, the landscape metric information and vegetation index information of UGS were obtained based on PlanetScope data, and a total of 439 sampling grids (1 km × 1 km) were generated. The urban surface temperature of built-up areas was extracted from Landsat8-TIRS images. The 12 landscape metrics and 14 vegetation indexes were assigned as independent variables, and surface temperature the dependent variable. Support Vector Machine (SVM), Gradient Boost Regression Tree (GBRT) and Random Forest (RF) were enlisted to establish numerical models to predict surface temperature. The results showed that: (1) It was feasible to predict local surface temperature using a combination of landscape metrics and vegetation indexes. Among the three models, RF demonstrated the best accuracy. (2) Collectively, all the factors play a role in the surface-temperature prediction. The most influential factor was Difference Vegetation Index (DVI), followed by Green Normalized Difference Vegetation Index (GNDVI), Class Area (CA) and AREA. This study developed remote sensing techniques to extract a basket of UGS factors to predict the surface temperature at local urban sites. The methods could be applied to other cities to evaluate the cooling impacts of green infrastructures. The findings could provide a scientific basis for ecological spatial planning of UGS to optimize cooling benefits in the arid region.<br />Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2022 Elsevier B.V. All rights reserved.)

Details

Language :
English
ISSN :
1879-1026
Volume :
825
Database :
MEDLINE
Journal :
The Science of the total environment
Publication Type :
Academic Journal
Accession number :
35192831
Full Text :
https://doi.org/10.1016/j.scitotenv.2022.154006