Back to Search Start Over

Characterizing the Chemical Profile of Biological Decline in Stormwater-Impacted Urban Watersheds.

Authors :
Peter KT
Lundin JI
Wu C
Feist BE
Tian Z
Cameron JR
Scholz NL
Kolodziej EP
Source :
Environmental science & technology [Environ Sci Technol] 2022 Mar 01; Vol. 56 (5), pp. 3159-3169. Date of Electronic Publication: 2022 Feb 15.
Publication Year :
2022

Abstract

Chemical contamination is an increasingly important conservation issue in urban runoff-impacted watersheds. Regulatory and restoration efforts typically evaluate limited conventional parameters and pollutants. However, complex urban chemical mixtures contain hundreds to thousands of organic contaminants that remain unidentified, unregulated, and poorly understood. This study aimed to develop broadly representative metrics of water quality impairment corresponding to previously documented biological degradation along gradients of human impacts. Stream samples ( n = 65, baseflow/rainfall conditions, 2017-2018) were collected from 15 regional watersheds (Puget Sound, WA, USA) across an urbanization gradient defined by landscape characteristics. Surface water chemical composition characterized via non-targeted high-resolution mass spectrometry (7068 detections) was highly correlated with landscape-based urbanization gradient ( p < 0.01) and season ( p < 0.01). Landscape-scale changes in chemical composition closely aligned with two anchors of biological decline: coho salmon ( Oncorhynchus kisutch ) mortality risk ( p < 0.001) and loss of stream macroinvertebrate diversity and abundance ( p < 0.001). We isolated and identified 32 indicators for urban runoff impacts and corresponding receiving water ecological health, including well-known anthropogenic contaminants (e.g., caffeine, organophosphates, vehicle-derived chemicals), two related environmental transformation products, and a novel (methoxymethyl)melamine compound. Outcomes support data-directed selection of next-generation water quality indicators for prioritization and evaluation of watershed management efforts intended to protect aquatic ecosystems.

Details

Language :
English
ISSN :
1520-5851
Volume :
56
Issue :
5
Database :
MEDLINE
Journal :
Environmental science & technology
Publication Type :
Academic Journal
Accession number :
35166536
Full Text :
https://doi.org/10.1021/acs.est.1c08274