Back to Search Start Over

Improving robustness of automatic cardiac function quantification from cine magnetic resonance imaging using synthetic image data.

Authors :
Gheorghiță BA
Itu LM
Sharma P
Suciu C
Wetzl J
Geppert C
Ali MAA
Lee AM
Piechnik SK
Neubauer S
Petersen SE
Schulz-Menger J
Chițiboi T
Source :
Scientific reports [Sci Rep] 2022 Feb 14; Vol. 12 (1), pp. 2391. Date of Electronic Publication: 2022 Feb 14.
Publication Year :
2022

Abstract

Although having been the subject of intense research over the years, cardiac function quantification from MRI is still not a fully automatic process in the clinical practice. This is partly due to the shortage of training data covering all relevant cardiovascular disease phenotypes. We propose to synthetically generate short axis CINE MRI using a generative adversarial model to expand the available data sets that consist of predominantly healthy subjects to include more cases with reduced ejection fraction. We introduce a deep learning convolutional neural network (CNN) to predict the end-diastolic volume, end-systolic volume, and implicitly the ejection fraction from cardiac MRI without explicit segmentation. The left ventricle volume predictions were compared to the ground truth values, showing superior accuracy compared to state-of-the-art segmentation methods. We show that using synthetic data generated for pre-training a CNN significantly improves the prediction compared to only using the limited amount of available data, when the training set is imbalanced.<br /> (© 2022. The Author(s).)

Details

Language :
English
ISSN :
2045-2322
Volume :
12
Issue :
1
Database :
MEDLINE
Journal :
Scientific reports
Publication Type :
Academic Journal
Accession number :
35165324
Full Text :
https://doi.org/10.1038/s41598-022-06315-3