Back to Search Start Over

Discovery and Characterization of a Cryptic Secondary Binding Site in the Molecular Chaperone HSP70.

Authors :
O'Connor S
Le Bihan YV
Westwood IM
Liu M
Mak OW
Zazeri G
Povinelli APR
Jones AM
van Montfort R
Reynisson J
Collins I
Source :
Molecules (Basel, Switzerland) [Molecules] 2022 Jan 26; Vol. 27 (3). Date of Electronic Publication: 2022 Jan 26.
Publication Year :
2022

Abstract

Heat Shock Protein 70s (HSP70s) are key molecular chaperones that are overexpressed in many cancers and often associated with metastasis and poor prognosis. It has proven difficult to develop ATP-competitive, drug-like small molecule inhibitors of HSP70s due to the flexible and hydrophilic nature of the HSP70 ATP-binding site and its high affinity for endogenous nucleotides. The aim of this study was to explore the potential for the inhibition of HSP70 through alternative binding sites using fragment-based approaches. A surface plasmon resonance (SPR) fragment screen designed to detect secondary binding sites in HSP70 led to the identification by X-ray crystallography of a cryptic binding site in the nucleotide-binding domain (NBD) of HSP70 adjacent to the ATP-binding site. Fragment binding was confirmed and characterized as ATP-competitive using SPR and ligand-observed NMR methods. Molecular dynamics simulations were applied to understand the interactions with the protein upon ligand binding, and local secondary structure changes consistent with interconversion between the observed crystal structures with and without the cryptic pocket were detected. A virtual high-throughput screen (vHTS) against the cryptic pocket was conducted, and five compounds with diverse chemical scaffolds were confirmed to bind to HSP70 with micromolar affinity by SPR. These results identified and characterized a new targetable site on HSP70. While targeting HSP70 remains challenging, the new site may provide opportunities to develop allosteric ATP-competitive inhibitors with differentiated physicochemical properties from current series.

Details

Language :
English
ISSN :
1420-3049
Volume :
27
Issue :
3
Database :
MEDLINE
Journal :
Molecules (Basel, Switzerland)
Publication Type :
Academic Journal
Accession number :
35164081
Full Text :
https://doi.org/10.3390/molecules27030817