Back to Search
Start Over
Enantiotropy of Simvastatin as a Result of Weakened Interactions in the Crystal Lattice: Entropy-Driven Double Transitions and the Transient Modulated Phase as Seen by Solid-State NMR Spectroscopy.
Enantiotropy of Simvastatin as a Result of Weakened Interactions in the Crystal Lattice: Entropy-Driven Double Transitions and the Transient Modulated Phase as Seen by Solid-State NMR Spectroscopy.
- Source :
-
Molecules (Basel, Switzerland) [Molecules] 2022 Jan 20; Vol. 27 (3). Date of Electronic Publication: 2022 Jan 20. - Publication Year :
- 2022
-
Abstract
- In crystalline molecular solids, in the absence of strong intermolecular interactions, entropy-driven processes play a key role in the formation of dynamically modulated transient phases. Specifically, in crystalline simvastatin, the observed fully reversible enantiotropic behavior is associated with multiple order-disorder transitions: upon cooling, the dynamically disordered high-temperature polymorphic Form I is transformed to the completely ordered low-temperature polymorphic Form III via the intermediate (transient) modulated phase II. This behavior is associated with a significant reduction in the kinetic energy of the rotating and flipping ester substituents, as well as a decrease in structural ordering into two distinct positions. In transient phase II, the conventional three-dimensional structure is modulated by periodic distortions caused by cooperative conformation exchange of the ester substituent between the two states, which is enabled by weakened hydrogen bonding. Based on solid-state NMR data analysis, the mechanism of the enantiotropic phase transition and the presence of the transient modulated phase are documented.
Details
- Language :
- English
- ISSN :
- 1420-3049
- Volume :
- 27
- Issue :
- 3
- Database :
- MEDLINE
- Journal :
- Molecules (Basel, Switzerland)
- Publication Type :
- Academic Journal
- Accession number :
- 35163943
- Full Text :
- https://doi.org/10.3390/molecules27030679