Back to Search
Start Over
Virulent Mycobacterium avium subspecies hominissuis subverts macrophages during early stages of infection.
- Source :
-
Microbiology (Reading, England) [Microbiology (Reading)] 2022 Feb; Vol. 168 (2). - Publication Year :
- 2022
-
Abstract
- Virulent non-tuberculous Mycobacteria (NTMs) successfully reside and multiply within the phagosomes of phagocytic cells such as monocytes and macrophages. Macrophages play a very important role in the innate clearance of intracellular pathogens including NTMs. Attenuated Mycobacterium avium subsp. hominissuis 100 enters macrophages but is incapable of escaping these cells via canonical mycobacteria escape mechanisms. Alternatively, virulent Mycobacterium avium subsp. hominissuis 104 and Mycobacterium abscessus subsp. abscessus are able to modify macrophages to suit their growth, survival and ultimately escape from macrophages, while non-virulent Mycobacterium smegmatis is readily killed by macrophages. In this study we focused on early infection of macrophages with NTMs to determine the phenotypic response of macrophages, M1 or M2 differentiation, and phosphorylation alterations that can affect cellular response to invading bacteria. Our findings indicate that infection of the macrophage with MAH 100 and M. smegmatis favours the development of M1 macrophage, a pro-inflammatory phenotype associated with the killing of intracellular pathogens, while infection of the macrophage with MAH 104 and M. abscessus favoured the development of M2 macrophage, an anti-inflammatory phenotype associated with the healing process. Interference with the host post-translational mechanisms, such as protein phosphorylation, is a key strategy used by many intracellular bacterial pathogens to modulate macrophage phenotype and subvert macrophage function. By comparing protein phosphorylation patterns of infected macrophages, we observed that uptake of both MAH 100 and M. smegmatis resulted in MARCKS-related protein phosphorylation, which has been associated with macrophage activation. In contrast, in macrophages infected with MAH 104 and M. abscessus , methionine adenosyltransferase IIβ, an enzyme that catalyses the biosynthesis of S-adenosylmethionine, a methyl donor for DNA methylation. Inhibition of DNA methylation with 5-aza-2 deoxycytidine, significantly impaired the survival of MAH 104 in macrophages. Our findings suggest that the virulent MAH 104 and M. abscessus enhance its survival in the macrophage possibly through interference with the epigenome responses.
Details
- Language :
- English
- ISSN :
- 1465-2080
- Volume :
- 168
- Issue :
- 2
- Database :
- MEDLINE
- Journal :
- Microbiology (Reading, England)
- Publication Type :
- Academic Journal
- Accession number :
- 35133955
- Full Text :
- https://doi.org/10.1099/mic.0.001133