Back to Search
Start Over
A fragment integrational approach to GPCR inhibition: Identification of a high affinity small molecule CXCR4 antagonist.
- Source :
-
European journal of medicinal chemistry [Eur J Med Chem] 2022 Mar 05; Vol. 231, pp. 114150. Date of Electronic Publication: 2022 Jan 28. - Publication Year :
- 2022
-
Abstract
- Targeting the protein-protein interactions involving CXCR4, a member of chemokine receptor family and G-protein-coupled receptor superfamily, has become an attractive therapeutic strategy for HIV-1 infection, hematopoietic stem cell mobilization, and cancer metastasis. As such, new small molecule CXCR4 antagonists are needed to offer therapeutic alternatives with enhanced clinical outcomes. Here, employing a fragment integrational approach we designed and synthesized a new and potent small molecule CXCR4 antagonist (named as HF51116), as well as a fluorescent (FITC)-labeled HF51116 (FITC-HF51116). HF51116 exhibited very high CXCR4 binding affinity with IC <subscript>50</subscript> of 12 nM in competitive binding with a CXCR4 specific antibody 12G5, which is comparable to the wild type chemokines or synthetic peptides of much larger molecular sizes. Direct binding measurement using FITC-HF51116 further revealed the compound's high CXCR4 affinity. HF51116 strongly antagonized SDF-1α-induced cell migration, calcium mobilization, and CXCR4 internalization. Furthermore, HF51116 inhibited HIV-1 infection via CXCR4, demonstrating its antiviral therapeutic potential. The mechanism of HF51116-CXCR4 interaction was analyzed by site-directed mutagenesis and molecular modeling which suggested that the compound recognizes the minor and major subpockets of CXCR4. Its binding to CXCR4 was found to block G protein-dependent downstream signal pathways as detected by luciferase reporter assays. With its potent bioactivities and asymmetric structure amenable to chemical diversification, HF51116 may serve as a prototype for developing a new class of CXCR4-targeted therapeutics and proof of the concept of similar strategies for studying other GPCRs.<br />Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2022 Elsevier Masson SAS. All rights reserved.)
Details
- Language :
- English
- ISSN :
- 1768-3254
- Volume :
- 231
- Database :
- MEDLINE
- Journal :
- European journal of medicinal chemistry
- Publication Type :
- Academic Journal
- Accession number :
- 35124530
- Full Text :
- https://doi.org/10.1016/j.ejmech.2022.114150