Back to Search Start Over

Preventing the Capillary-Induced Collapse of Vertical Nanostructures.

Authors :
Ghosh T
Fritz EC
Balakrishnan D
Zhang Z
Vrancken N
Anand U
Zhang H
Loh ND
Xu X
Holsteyns F
Nijhuis CA
Mirsaidov U
Source :
ACS applied materials & interfaces [ACS Appl Mater Interfaces] 2022 Feb 02; Vol. 14 (4), pp. 5537-5544. Date of Electronic Publication: 2022 Jan 18.
Publication Year :
2022

Abstract

Robust processes to fabricate densely packed high-aspect-ratio (HAR) vertical semiconductor nanostructures are important for applications in microelectronics, energy storage and conversion. One of the main challenges in manufacturing these nanostructures is pattern collapse, which is the damage induced by capillary forces from numerous solution-based processes used during their fabrication. Here, using an array of vertical silicon (Si) nanopillars as test structures, we demonstrate that pattern collapse can be greatly reduced by a solution-phase deposition method to coat the nanopillars with self-assembled monolayers (SAMs). As the main cause for pattern collapse is strong adhesion between the nanopillars, we systematically evaluated SAMs with different surface energy components and identified H-bonding between the surfaces to have the largest contribution to the adhesion. The advantage of the solution-phase deposition method is that it can be implemented before any drying step, which causes patterns to collapse. Moreover, after drying, these SAMs can be easily removed using a gentle air-plasma treatment right before the next fabrication step, leaving a clean nanopillar surface behind. Therefore, our approach provides a facile and effective method to prevent the drying-induced pattern collapse in micro- and nanofabrication processes.

Details

Language :
English
ISSN :
1944-8252
Volume :
14
Issue :
4
Database :
MEDLINE
Journal :
ACS applied materials & interfaces
Publication Type :
Academic Journal
Accession number :
35040618
Full Text :
https://doi.org/10.1021/acsami.1c17781