Back to Search Start Over

Polygenic risk modeling for prediction of epithelial ovarian cancer risk.

Authors :
Dareng EO
Tyrer JP
Barnes DR
Jones MR
Yang X
Aben KKH
Adank MA
Agata S
Andrulis IL
Anton-Culver H
Antonenkova NN
Aravantinos G
Arun BK
Augustinsson A
Balmaña J
Bandera EV
Barkardottir RB
Barrowdale D
Beckmann MW
Beeghly-Fadiel A
Benitez J
Bermisheva M
Bernardini MQ
Bjorge L
Black A
Bogdanova NV
Bonanni B
Borg A
Brenton JD
Budzilowska A
Butzow R
Buys SS
Cai H
Caligo MA
Campbell I
Cannioto R
Cassingham H
Chang-Claude J
Chanock SJ
Chen K
Chiew YE
Chung WK
Claes KBM
Colonna S
Cook LS
Couch FJ
Daly MB
Dao F
Davies E
de la Hoya M
de Putter R
Dennis J
DePersia A
Devilee P
Diez O
Ding YC
Doherty JA
Domchek SM
Dörk T
du Bois A
Dürst M
Eccles DM
Eliassen HA
Engel C
Evans GD
Fasching PA
Flanagan JM
Fortner RT
Machackova E
Friedman E
Ganz PA
Garber J
Gensini F
Giles GG
Glendon G
Godwin AK
Goodman MT
Greene MH
Gronwald J
Hahnen E
Haiman CA
Håkansson N
Hamann U
Hansen TVO
Harris HR
Hartman M
Heitz F
Hildebrandt MAT
Høgdall E
Høgdall CK
Hopper JL
Huang RY
Huff C
Hulick PJ
Huntsman DG
Imyanitov EN
Isaacs C
Jakubowska A
James PA
Janavicius R
Jensen A
Johannsson OT
John EM
Jones ME
Kang D
Karlan BY
Karnezis A
Kelemen LE
Khusnutdinova E
Kiemeney LA
Kim BG
Kjaer SK
Komenaka I
Kupryjanczyk J
Kurian AW
Kwong A
Lambrechts D
Larson MC
Lazaro C
Le ND
Leslie G
Lester J
Lesueur F
Levine DA
Li L
Li J
Loud JT
Lu KH
Lubiński J
Mai PL
Manoukian S
Marks JR
Matsuno RK
Matsuo K
May T
McGuffog L
McLaughlin JR
McNeish IA
Mebirouk N
Menon U
Miller A
Milne RL
Minlikeeva A
Modugno F
Montagna M
Moysich KB
Munro E
Nathanson KL
Neuhausen SL
Nevanlinna H
Yie JNY
Nielsen HR
Nielsen FC
Nikitina-Zake L
Odunsi K
Offit K
Olah E
Olbrecht S
Olopade OI
Olson SH
Olsson H
Osorio A
Papi L
Park SK
Parsons MT
Pathak H
Pedersen IS
Peixoto A
Pejovic T
Perez-Segura P
Permuth JB
Peshkin B
Peterlongo P
Piskorz A
Prokofyeva D
Radice P
Rantala J
Riggan MJ
Risch HA
Rodriguez-Antona C
Ross E
Rossing MA
Runnebaum I
Sandler DP
Santamariña M
Soucy P
Schmutzler RK
Setiawan VW
Shan K
Sieh W
Simard J
Singer CF
Sokolenko AP
Song H
Southey MC
Steed H
Stoppa-Lyonnet D
Sutphen R
Swerdlow AJ
Tan YY
Teixeira MR
Teo SH
Terry KL
Terry MB
Thomassen M
Thompson PJ
Thomsen LCV
Thull DL
Tischkowitz M
Titus L
Toland AE
Torres D
Trabert B
Travis R
Tung N
Tworoger SS
Valen E
van Altena AM
van der Hout AH
Van Nieuwenhuysen E
van Rensburg EJ
Vega A
Edwards DV
Vierkant RA
Wang F
Wappenschmidt B
Webb PM
Weinberg CR
Weitzel JN
Wentzensen N
White E
Whittemore AS
Winham SJ
Wolk A
Woo YL
Wu AH
Yan L
Yannoukakos D
Zavaglia KM
Zheng W
Ziogas A
Zorn KK
Kleibl Z
Easton D
Lawrenson K
DeFazio A
Sellers TA
Ramus SJ
Pearce CL
Monteiro AN
Cunningham J
Goode EL
Schildkraut JM
Berchuck A
Chenevix-Trench G
Gayther SA
Antoniou AC
Pharoah PDP
Source :
European journal of human genetics : EJHG [Eur J Hum Genet] 2022 Mar; Vol. 30 (3), pp. 349-362. Date of Electronic Publication: 2022 Jan 14.
Publication Year :
2022

Abstract

Polygenic risk scores (PRS) for epithelial ovarian cancer (EOC) have the potential to improve risk stratification. Joint estimation of Single Nucleotide Polymorphism (SNP) effects in models could improve predictive performance over standard approaches of PRS construction. Here, we implemented computationally efficient, penalized, logistic regression models (lasso, elastic net, stepwise) to individual level genotype data and a Bayesian framework with continuous shrinkage, "select and shrink for summary statistics" (S4), to summary level data for epithelial non-mucinous ovarian cancer risk prediction. We developed the models in a dataset consisting of 23,564 non-mucinous EOC cases and 40,138 controls participating in the Ovarian Cancer Association Consortium (OCAC) and validated the best models in three populations of different ancestries: prospective data from 198,101 women of European ancestries; 7,669 women of East Asian ancestries; 1,072 women of African ancestries, and in 18,915 BRCA1 and 12,337 BRCA2 pathogenic variant carriers of European ancestries. In the external validation data, the model with the strongest association for non-mucinous EOC risk derived from the OCAC model development data was the S4 model (27,240 SNPs) with odds ratios (OR) of 1.38 (95% CI: 1.28-1.48, AUC: 0.588) per unit standard deviation, in women of European ancestries; 1.14 (95% CI: 1.08-1.19, AUC: 0.538) in women of East Asian ancestries; 1.38 (95% CI: 1.21-1.58, AUC: 0.593) in women of African ancestries; hazard ratios of 1.36 (95% CI: 1.29-1.43, AUC: 0.592) in BRCA1 pathogenic variant carriers and 1.49 (95% CI: 1.35-1.64, AUC: 0.624) in BRCA2 pathogenic variant carriers. Incorporation of the S4 PRS in risk prediction models for ovarian cancer may have clinical utility in ovarian cancer prevention programs.<br /> (© 2021. The Author(s).)

Details

Language :
English
ISSN :
1476-5438
Volume :
30
Issue :
3
Database :
MEDLINE
Journal :
European journal of human genetics : EJHG
Publication Type :
Academic Journal
Accession number :
35027648
Full Text :
https://doi.org/10.1038/s41431-021-00987-7