Back to Search Start Over

Synthesis of Nucleoside-like Molecules from a Pyrolysis Product of Cellulose and Their Computational Prediction as Potential SARS-CoV-2 RNA-Dependent RNA Polymerase Inhibitors.

Authors :
Defant A
Dosi F
Innocenti N
Mancini I
Source :
International journal of molecular sciences [Int J Mol Sci] 2022 Jan 04; Vol. 23 (1). Date of Electronic Publication: 2022 Jan 04.
Publication Year :
2022

Abstract

(1 R ,5 S )-1-Hydroxy-3,6-dioxa-bicyclo[3.2.1]octan-2-one, available by an efficient catalytic pyrolysis of cellulose, has been applied as a chiral building block in the synthesis of seven new nucleoside analogues, with structural modifications on the nucleobase moiety and on the carboxyl- derived unit. The inverted configuration by Mitsunobu reaction used in their synthesis was verified by 2D-NOESY correlations, supported by the optimized structure employing the DFT methods. An in silico screening of these compounds as inhibitors of SARS-CoV-2 RNA-dependent RNA polymerase has been carried out in comparison with both remdesivir, a mono-phosphoramidate prodrug recently approved for COVID-19 treatment, and its ribonucleoside metabolite GS-441524. Drug-likeness prediction and data by docking calculation indicated compound 6 [=(3 S ,5 S )-methyl 5-(hydroxymethyl)-3-(6-(4-methylpiperazin-1-yl)-9H-purin-9-yl)tetrahydrofuran-3-carboxylate] as the best candidate. Furthermore, molecular dynamics simulation showed a stable interaction of structure 6 in RNA-dependent RNA polymerase (RdRp) complex and a lower average atomic fluctuation than GS-441524, suggesting a well accommodation in the RdRp binding pocket.

Details

Language :
English
ISSN :
1422-0067
Volume :
23
Issue :
1
Database :
MEDLINE
Journal :
International journal of molecular sciences
Publication Type :
Academic Journal
Accession number :
35008944
Full Text :
https://doi.org/10.3390/ijms23010518