Back to Search Start Over

The Effects of Bipolar Disorder Risk on a Mobile Phone Keystroke Dynamics Based Biomarker of Brain Age.

Authors :
Zulueta J
Demos AP
Vesel C
Ross M
Piscitello A
Hussain F
Langenecker SA
McInnis M
Nelson P
Ryan K
Leow A
Ajilore O
Source :
Frontiers in psychiatry [Front Psychiatry] 2021 Dec 22; Vol. 12, pp. 739022. Date of Electronic Publication: 2021 Dec 22 (Print Publication: 2021).
Publication Year :
2021

Abstract

Background: Research by our group and others have demonstrated the feasibility of using mobile phone derived metadata to model mood and cognition. Given the effects of age and mood on cognitive performance, it was hypothesized that using such data a model could be built to predict chronological age and that differences between predicted age and actual age could be a marker of pathology. Methods: These data were collected via the ongoing BiAffect study. Participants complete the Mood Disorders Questionnaire (MDQ), a screening questionnaire for bipolar disorder, and self-reported their birth year. Data were split into training and validation sets. Features derived from the smartphone kinematics were used to train random forest regression models to predict age. Prediction errors were compared between participants screening positive and negative on the MDQ. Results: Three hundred forty-four participants had analyzable data of which 227 had positive screens for bipolar disorder and 117 had negative screens. The absolute prediction error tended to be lower for participants with positive screens (median 4.50 years) than those with negative screens (median 7.92 years) ( W = 508, p = 0.0049). The raw prediction error tended to be lower for participants with negative screens (median = -5.95 years) than those with positive screens (median = 0.55 years) ( W = 1,037, p = 0.037). Conclusions: The tendency to underestimate the chronological age of participants screening negative for bipolar disorder compared to those screening positive is consistent with the finding that bipolar disorder may be associated with brain changes that could reflect pathological aging. This interesting result could also reflect that those who screen negative for bipolar disorder and who engaged in the study were more likely to have higher premorbid functioning. This work demonstrates that age-related changes may be detected via a passive smartphone kinematics based digital biomarker.<br />Competing Interests: OA is a co-founder of KeyWIse AI. He also serves on the advisory boards of Embodied Labs and Blueprint Health. AL is an advisor for Buoy health and a consultant for Otsuka USA and ATAI Life Sciences, in addition to being a Co-founder of KeyWise AI. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.<br /> (Copyright © 2021 Zulueta, Demos, Vesel, Ross, Piscitello, Hussain, Langenecker, McInnis, Nelson, Ryan, Leow and Ajilore.)

Details

Language :
English
ISSN :
1664-0640
Volume :
12
Database :
MEDLINE
Journal :
Frontiers in psychiatry
Publication Type :
Academic Journal
Accession number :
35002792
Full Text :
https://doi.org/10.3389/fpsyt.2021.739022