Back to Search Start Over

Validation of a combined ultrasound and bioluminescence imaging system with magnetic resonance imaging in orthotopic pancreatic murine tumors.

Authors :
Rojas JD
Joiner JB
Velasco B
Bautista KJB
Aji AM
Moore CJ
Beaumont NJ
Pylayeva-Gupta Y
Dayton PA
Gessner RC
Czernuszewicz TJ
Source :
Scientific reports [Sci Rep] 2022 Jan 07; Vol. 12 (1), pp. 102. Date of Electronic Publication: 2022 Jan 07.
Publication Year :
2022

Abstract

Preclinical mouse solid tumor models are widely used to evaluate efficacy of novel cancer therapeutics. Recent reports have highlighted the need for utilizing orthotopic implantation to represent clinical disease more accurately, however the deep tissue location of these tumors makes longitudinal assessment challenging without the use of imaging techniques. The purpose of this study was to evaluate the performance of a new multi-modality high-throughput in vivo imaging system that combines bioluminescence imaging (BLI) with robotic, hands-free ultrasound (US) for evaluating orthotopic mouse models. Long utilized in cancer research as independent modalities, we hypothesized that the combination of BLI and US would offer complementary advantages of detection sensitivity and quantification accuracy, while mitigating individual technological weaknesses. Bioluminescent pancreatic tumor cells were injected into the pancreas tail of C57BL/6 mice and imaged weekly with the combination system and magnetic resonance imaging (MRI) to serve as a gold standard. BLI photon flux was quantified to assess tumor activity and distribution, and US and MRI datasets were manually segmented for gross tumor volume. Robotic US and MRI demonstrated a strong agreement (R <superscript>2</superscript>  = 0.94) for tumor volume measurement. BLI showed a weak overall agreement with MRI (R <superscript>2</superscript>  = 0.21), however, it offered the greatest sensitivity to detecting the presence of tumors. We conclude that combining BLI with robotic US offers an efficient screening tool for orthotopic tumor models.<br /> (© 2022. The Author(s).)

Details

Language :
English
ISSN :
2045-2322
Volume :
12
Issue :
1
Database :
MEDLINE
Journal :
Scientific reports
Publication Type :
Academic Journal
Accession number :
34996939
Full Text :
https://doi.org/10.1038/s41598-021-03684-z