Back to Search Start Over

Dual-Mechanism Confers Self-Resistance to the Antituberculosis Antibiotic Capreomycin.

Authors :
Pan YC
Wang YL
Toh SI
Hsu NS
Lin KH
Xu Z
Huang SC
Wu TK
Li TL
Chang CY
Source :
ACS chemical biology [ACS Chem Biol] 2022 Jan 21; Vol. 17 (1), pp. 138-146. Date of Electronic Publication: 2022 Jan 07.
Publication Year :
2022

Abstract

Capreomycin (CMN) is an important second-line antituberculosis antibiotic isolated from Saccharothrix mutabilis subspecies capreolus . The gene cluster for CMN biosynthesis has been identified and sequenced, wherein the cph gene was annotated as a phosphotransferase likely engaging in self-resistance. Previous studies reported that Cph inactivates two CMNs, CMN IA and IIA, by phosphorylation. We, herein, report that (1) Escherichia coli harboring the cph gene becomes resistant to both CMN IIA and IIB, (2) phylogenetic analysis regroups Cph to a new clade in the phosphotransferase protein family, (3) Cph shares a three-dimensional structure akin to the aminoglycoside phosphotransferases with a high binding affinity ( K <subscript>D</subscript> ) to both CMN IIA and IIB at micromolar levels, and (4) Cph utilizes either ATP or GTP as a phosphate group donor transferring its γ-phosphate to the hydroxyl group of CMN IIA. Until now, Cph and Vph (viomycin phosphotransferase) are the only two known enzymes inactivating peptide-based antibiotics through phosphorylation. Our biochemical characterization and structural determination conclude that Cph confers the gene-carrying species resistance to CMN by means of either chemical modification or physical sequestration, a naturally manifested belt and braces strategy. These findings add a new chapter into the self-resistance of bioactive natural products, which is often overlooked while designing new bioactive molecules.

Details

Language :
English
ISSN :
1554-8937
Volume :
17
Issue :
1
Database :
MEDLINE
Journal :
ACS chemical biology
Publication Type :
Academic Journal
Accession number :
34994196
Full Text :
https://doi.org/10.1021/acschembio.1c00799