Back to Search Start Over

Isoform-Selective HDAC Inhibitor Mocetinostat (MGCD0103) Alleviates Myocardial Ischemia/Reperfusion Injury Via Mitochondrial Protection Through the HDACs/CREB/PGC-1α Signaling Pathway.

Authors :
Wang K
Tang R
Wang S
Xiong Y
Wang W
Chen G
Zhang K
Li P
Tang YD
Source :
Journal of cardiovascular pharmacology [J Cardiovasc Pharmacol] 2022 Feb 01; Vol. 79 (2), pp. 217-228. Date of Electronic Publication: 2022 Feb 01.
Publication Year :
2022

Abstract

Abstract: Over the past decade, histone deacetylases (HDACs) has been proven to manipulate development and exacerbation of cardiovascular diseases, including myocardial ischemia/reperfusion injury, cardiac hypertrophy, ventricular remodeling, and myocardial fibrosis. Inhibition of HDACs, especially class-I HDACs, is potent to the protection of ischemic myocardium after ischemia/reperfusion (I/R). Herein, we examine whether mocetinostat (MGCD0103, MOCE), a class-I selective HDAC inhibitor in phase-II clinical trial, shows cardioprotection under I/R in vivo and in vitro, if so, reveal its potential pharmacological mechanism to provide an experimental and theoretical basis for mocetinostat usage in a clinical setting. Human cardiac myocytes (HCMs) were exposed to hypoxia and reoxygenation (H/R), with or without mocetinostat treatment. H/R reduced mitochondrial membrane potential and induced HCMs apoptosis. Mocetinostat pretreatment reversed these H/R-induced mitochondrial damage and cellular apoptosis and upregulated CREB, p-CREB, and PGC-1α in HCMs during H/R. Transfection with small interfering RNA against PGC-1α or CREB abolished the protective effects of mocetinostat on cardiomyocytes undergoing H/R. In vivo, mocetinostat was demonstrated to protect myocardial injury posed by myocardial I/R via the activation of CREB and upregulation of PGC-1α. Mocetinostat (MGCD0103) can protect myocardium from I/R injury through mitochondrial protection mediated by CREB/PGC-1α pathway. Therefore, activation of the CREB/PGC-1α signaling pathway via the inhibition of Class-I HDACs may be a promising new therapeutic strategy for alleviating myocardial reperfusion injury.<br />Competing Interests: The authors report no conflicts of interest.<br /> (Copyright © 2021 Wolters Kluwer Health, Inc. All rights reserved.)

Details

Language :
English
ISSN :
1533-4023
Volume :
79
Issue :
2
Database :
MEDLINE
Journal :
Journal of cardiovascular pharmacology
Publication Type :
Academic Journal
Accession number :
34983914
Full Text :
https://doi.org/10.1097/FJC.0000000000001174