Back to Search
Start Over
Fragment-Sized and Bidentate (Immuno)Proteasome Inhibitors Derived from Cysteine and Threonine Targeting Warheads.
- Source :
-
Cells [Cells] 2021 Dec 06; Vol. 10 (12). Date of Electronic Publication: 2021 Dec 06. - Publication Year :
- 2021
-
Abstract
- Constitutive- and immunoproteasomes are part of the ubiquitin-proteasome system (UPS), which is responsible for the protein homeostasis. Selective inhibition of the immunoproteasome offers opportunities for the treatment of numerous diseases, including inflammation, autoimmune diseases, and hematologic malignancies. Although several inhibitors have been reported, selective nonpeptidic inhibitors are sparse. Here, we describe two series of compounds that target both proteasomes. First, benzoxazole-2-carbonitriles as fragment-sized covalent immunoproteasome inhibitors are reported. Systematic substituent scans around the fragment core of benzoxazole-2-carbonitrile led to compounds with single digit micromolar inhibition of the β5i subunit. Experimental and computational reactivity studies revealed that the substituents do not affect the covalent reactivity of the carbonitrile warhead, but mainly influence the non-covalent recognition. Considering the small size of the inhibitors, this finding emphasizes the importance of the non-covalent recognition step in the covalent mechanism of action. As a follow-up series, bidentate inhibitors are disclosed, in which electrophilic heterocyclic fragments, i.e., 2-vinylthiazole, benzoxazole-2-carbonitrile, and benzimidazole-2-carbonitrile were linked to threonine-targeting ( R )-boroleucine moieties. These compounds were designed to bind both the Thr1 and β5i-subunit-specific residue Cys48. However, inhibitory activities against (immuno)proteasome subunits showed that bidentate compounds inhibit the β5, β5i, β1, and β1i subunits with submicromolar to low-micromolar IC <subscript>50</subscript> values. Inhibitory assays against unrelated enzymes showed that compounds from both series are selective for proteasomes. The presented nonpeptidic and covalent derivatives are suitable hit compounds for the development of either β5i-selective immunoproteasome inhibitors or compounds targeting multiple subunits of both proteasomes.
- Subjects :
- Autoimmune Diseases immunology
Autoimmune Diseases pathology
Benzoxazoles chemistry
Benzoxazoles pharmacology
Computational Chemistry
Cysteine immunology
Hematologic Neoplasms immunology
Hematologic Neoplasms pathology
Humans
Inflammation immunology
Inflammation pathology
Models, Molecular
Proteasome Endopeptidase Complex chemistry
Proteasome Endopeptidase Complex immunology
Proteasome Inhibitors chemistry
Proteasome Inhibitors pharmacology
Protein Subunits chemistry
Protein Subunits immunology
Structure-Activity Relationship
Threonine immunology
Ubiquitin immunology
Cysteine chemistry
Proteasome Endopeptidase Complex drug effects
Threonine chemistry
Ubiquitin chemistry
Subjects
Details
- Language :
- English
- ISSN :
- 2073-4409
- Volume :
- 10
- Issue :
- 12
- Database :
- MEDLINE
- Journal :
- Cells
- Publication Type :
- Academic Journal
- Accession number :
- 34943940
- Full Text :
- https://doi.org/10.3390/cells10123431