Back to Search
Start Over
PermaPhos Ser : autonomous synthesis of functional, permanently phosphorylated proteins.
- Source :
-
BioRxiv : the preprint server for biology [bioRxiv] 2021 Dec 14. Date of Electronic Publication: 2021 Dec 14. - Publication Year :
- 2021
-
Abstract
- Installing stable, functional mimics of phosphorylated amino acids into proteins offers a powerful strategy to study protein regulation. Previously, a genetic code expansion (GCE) system was developed to translationally install non-hydrolyzable phosphoserine (nhpSer), with the γ-oxygen replaced with carbon, but it has seen limited usage. Here, we achieve a 40-fold improvement in this system by engineering into Escherichia coli a biosynthetic pathway that produces nhpSer from the central metabolite phosphoenolpyruvate. Using this "PermaPhos <superscript>Ser</superscript> " system - an autonomous 21-amino acid E. coli expression system for incorporating nhpSer into target proteins - we show that nhpSer faithfully mimics the effects of phosphoserine in three stringent test cases: promoting 14-3-3/client complexation, disrupting 14-3-3 dimers, and activating GSK3β phosphorylation of the SARS-CoV-2 nucleocapsid protein. This facile access to nhpSer containing proteins should allow nhpSer to replace Asp and Glu as the go-to pSer phosphomimetic for proteins produced in E. coli .
Details
- Language :
- English
- ISSN :
- 2692-8205
- Database :
- MEDLINE
- Journal :
- BioRxiv : the preprint server for biology
- Publication Type :
- Academic Journal
- Accession number :
- 34931187
- Full Text :
- https://doi.org/10.1101/2021.10.22.465468