Back to Search Start Over

Plasma Driven Exsolution for Nanoscale Functionalization of Perovskite Oxides.

Authors :
Kyriakou V
Sharma RK
Neagu D
Peeters F
De Luca O
Rudolf P
Pandiyan A
Yu W
Cha SW
Welzel S
van de Sanden MCM
Tsampas MN
Source :
Small methods [Small Methods] 2021 Dec; Vol. 5 (12), pp. e2100868. Date of Electronic Publication: 2021 Oct 22.
Publication Year :
2021

Abstract

Perovskite oxides with dispersed nanoparticles on their surface are considered instrumental in energy conversion and catalytic processes. Redox exsolution is an alternative method to the conventional deposition techniques for directly growing well-dispersed and anchored nanoarchitectures from the oxide support through thermochemical or electrochemical reduction. Herein, a new method for such nanoparticle nucleation through the exposure of the host perovskite to plasma is shown. The applicability of this new method is demonstrated by performing catalytic tests for CO <subscript>2</subscript> hydrogenation over Ni exsolved nanoparticles prepared by either plasma or conventional H <subscript>2</subscript> reduction. Compared to the conventional thermochemical H <subscript>2</subscript> reduction, there are plasma conditions that lead to the exsolution of a more than ten times higher Ni amount from a lanthanum titanate perovskite, which is similar to the reported values of the electrochemical method. Unlike the electrochemical method, however, plasma does not require the integration of the material in an electrochemical cell, and is thus applicable to a wide range of microstructures and physical forms. Additionally, when N <subscript>2</subscript> plasma is employed, the nitrogen species are stripping out oxygen from the perovskite lattice, generating a key chemical intermediate, such as NO, rendering this technology even more appealing.<br /> (© 2021 Wiley-VCH GmbH.)

Details

Language :
English
ISSN :
2366-9608
Volume :
5
Issue :
12
Database :
MEDLINE
Journal :
Small methods
Publication Type :
Academic Journal
Accession number :
34928018
Full Text :
https://doi.org/10.1002/smtd.202100868