Back to Search Start Over

Size-Dependent Electroporation of Dye-Loaded Polymer Nanoparticles for Efficient and Safe Intracellular Delivery.

Authors :
Egloff S
Runser A
Klymchenko A
Reisch A
Source :
Small methods [Small Methods] 2021 Feb; Vol. 5 (2), pp. e2000947. Date of Electronic Publication: 2020 Dec 18.
Publication Year :
2021

Abstract

Efficient and safe delivery of nanoparticles (NPs) into the cytosol of living cells constitutes a major methodological challenge in bio-nanotechnology. Electroporation allows direct transfer of NPs into the cytosol by forming transient pores in the cell membrane, but it is criticized for invasiveness, and the applicable particle sizes are not well defined. Here, in order to establish principles for efficient delivery of NPs into the cytosol with minimal cytotoxicity, the influence of the size of NPs on their electroporation and intracellular behavior is investigated. For this study, fluorescent dye-loaded polymer NPs with core sizes between 10 and 40 nm are prepared. Optimizing the electroporation protocol allows minimizing contributions of endocytosis and to study directly the effect of NP size on electroporation. NPs of <20 nm hydrodynamic size are efficiently delivered into the cytosol, whereas this is not the case for NPs of >30 nm. Moreover, only particles of core size <15 nm diffuse freely throughout the cytosol. While electroporation at excessive electric fields induces cytotoxicity, the use of small NPs <20 nm allows efficient delivery at mild electroporation conditions. These results give clear methodological and design guidelines for the safe delivery of NPs for intracellular applications.<br /> (© 2020 Wiley-VCH GmbH.)

Details

Language :
English
ISSN :
2366-9608
Volume :
5
Issue :
2
Database :
MEDLINE
Journal :
Small methods
Publication Type :
Academic Journal
Accession number :
34927896
Full Text :
https://doi.org/10.1002/smtd.202000947