Back to Search
Start Over
Can activated titanium interbody cages accelerate or enhance spinal fusion? a review of the literature and a design for clinical trials.
- Source :
-
Journal of materials science. Materials in medicine [J Mater Sci Mater Med] 2021 Dec 18; Vol. 33 (1), pp. 1. Date of Electronic Publication: 2021 Dec 18. - Publication Year :
- 2021
-
Abstract
- While spinal interbody cage options have proliferated in the past decade, relatively little work has been done to explore the comparative potential of biomaterial technologies in promoting stable fusion. Innovations such as micro-etching and nano-architectural designs have shown purported benefits in in vitro studies, but lack clinical data describing their optimal implementation. Here, we critically assess the pre-clinical data supportive of various commercially available interbody cage biomaterial, topographical, and structural designs. We describe in detail the osteointegrative and osteoconductive benefits conferred by these modifications with a focus on polyetheretherketone (PEEK) and titanium (Ti) interbody implants. Further, we describe the rationale and design for two randomized controlled trials, which aim to address the paucity of clinical data available by comparing interbody fusion outcomes between either PEEK or activated Ti lumbar interbody cages. Utilizing dual-energy computed tomography (DECT), these studies will evaluate the relative implant-bone integration and fusion rates achieved by either micro-etched Ti or standard PEEK interbody devices. Taken together, greater understanding of the relative osseointegration profile at the implant-bone interface of cages with distinct topographies will be crucial in guiding the rational design of further studies and innovations.<br /> (© 2021. The Author(s).)
- Subjects :
- Animals
Bone Substitutes chemistry
Bone Substitutes pharmacology
Clinical Trials as Topic methods
Coated Materials, Biocompatible chemistry
Humans
Lumbar Vertebrae drug effects
Lumbar Vertebrae pathology
Lumbar Vertebrae physiology
Osseointegration physiology
Prosthesis Design methods
Prosthesis Design trends
Titanium chemistry
Coated Materials, Biocompatible pharmacology
Osseointegration drug effects
Prostheses and Implants
Spinal Fusion instrumentation
Spinal Fusion methods
Titanium pharmacology
Subjects
Details
- Language :
- English
- ISSN :
- 1573-4838
- Volume :
- 33
- Issue :
- 1
- Database :
- MEDLINE
- Journal :
- Journal of materials science. Materials in medicine
- Publication Type :
- Academic Journal
- Accession number :
- 34921610
- Full Text :
- https://doi.org/10.1007/s10856-021-06628-1