Cite
Stain-free identification of tissue pathology using a generative adversarial network to infer nanomechanical signatures.
MLA
Neary-Zajiczek, Lydia, et al. “Stain-Free Identification of Tissue Pathology Using a Generative Adversarial Network to Infer Nanomechanical Signatures.” Nanoscale Advances, vol. 3, no. 22, Sept. 2021, pp. 6403–14. EBSCOhost, https://doi.org/10.1039/d1na00527h.
APA
Neary-Zajiczek, L., Essmann, C., Rau, A., Bano, S., Clancy, N., Jansen, M., Heptinstall, L., Miranda, E., Gander, A., Pawar, V., Fernandez-Reyes, D., Shaw, M., Davidson, B., & Stoyanov, D. (2021). Stain-free identification of tissue pathology using a generative adversarial network to infer nanomechanical signatures. Nanoscale Advances, 3(22), 6403–6414. https://doi.org/10.1039/d1na00527h
Chicago
Neary-Zajiczek, Lydia, Clara Essmann, Anita Rau, Sophia Bano, Neil Clancy, Marnix Jansen, Lauren Heptinstall, et al. 2021. “Stain-Free Identification of Tissue Pathology Using a Generative Adversarial Network to Infer Nanomechanical Signatures.” Nanoscale Advances 3 (22): 6403–14. doi:10.1039/d1na00527h.