Back to Search Start Over

Boosting-GNN: Boosting Algorithm for Graph Networks on Imbalanced Node Classification.

Authors :
Shi S
Qiao K
Yang S
Wang L
Chen J
Yan B
Source :
Frontiers in neurorobotics [Front Neurorobot] 2021 Nov 25; Vol. 15, pp. 775688. Date of Electronic Publication: 2021 Nov 25 (Print Publication: 2021).
Publication Year :
2021

Abstract

The graph neural network (GNN) has been widely used for graph data representation. However, the existing researches only consider the ideal balanced dataset, and the imbalanced dataset is rarely considered. Traditional methods such as resampling, reweighting, and synthetic samples that deal with imbalanced datasets are no longer applicable in GNN. This study proposes an ensemble model called Boosting-GNN, which uses GNNs as the base classifiers during boosting. In Boosting-GNN, higher weights are set for the training samples that are not correctly classified by the previous classifiers, thus achieving higher classification accuracy and better reliability. Besides, transfer learning is used to reduce computational cost and increase fitting ability. Experimental results indicate that the proposed Boosting-GNN model achieves better performance than graph convolutional network (GCN), GraphSAGE, graph attention network (GAT), simplifying graph convolutional networks (SGC), multi-scale graph convolution networks (N-GCN), and most advanced reweighting and resampling methods on synthetic imbalanced datasets, with an average performance improvement of 4.5%.<br />Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.<br /> (Copyright © 2021 Shi, Qiao, Yang, Wang, Chen and Yan.)

Details

Language :
English
ISSN :
1662-5218
Volume :
15
Database :
MEDLINE
Journal :
Frontiers in neurorobotics
Publication Type :
Academic Journal
Accession number :
34899230
Full Text :
https://doi.org/10.3389/fnbot.2021.775688