Back to Search Start Over

KDM6B promotes activation of the oncogenic CDK4/6-pRB-E2F pathway by maintaining enhancer activity in MYCN-amplified neuroblastoma.

Authors :
D'Oto A
Fang J
Jin H
Xu B
Singh S
Mullasseril A
Jones V
Abu-Zaid A
von Buttlar X
Cooke B
Hu D
Shohet J
Murphy AJ
Davidoff AM
Yang J
Source :
Nature communications [Nat Commun] 2021 Dec 10; Vol. 12 (1), pp. 7204. Date of Electronic Publication: 2021 Dec 10.
Publication Year :
2021

Abstract

The H3K27me2/me3 histone demethylase KDM6B is essential to neuroblastoma cell survival. However, the mechanism of KDM6B action remains poorly defined. We demonstrate that inhibition of KDM6B activity 1) reduces the chromatin accessibility of E2F target genes and MYCN, 2) selectively leads to an increase of H3K27me3 but a decrease of the enhancer mark H3K4me1 at the CTCF and BORIS binding sites, which may, consequently, disrupt the long-range chromatin interaction of MYCN and E2F target genes, and 3) phenocopies the transcriptome induced by the specific CDK4/6 inhibitor palbociclib. Overexpression of CDK4/6 or Rb1 knockout confers neuroblastoma cell resistance to both palbociclib and the KDM6 inhibitor GSK-J4. These data indicate that KDM6B promotes an oncogenic CDK4/6-pRB-E2F pathway in neuroblastoma cells via H3K27me3-dependent enhancer-promoter interactions, providing a rationale to target KDM6B for high-risk neuroblastoma.<br /> (© 2021. The Author(s).)

Details

Language :
English
ISSN :
2041-1723
Volume :
12
Issue :
1
Database :
MEDLINE
Journal :
Nature communications
Publication Type :
Academic Journal
Accession number :
34893606
Full Text :
https://doi.org/10.1038/s41467-021-27502-2