Back to Search Start Over

Integrating User-Input into Deep Convolutional Neural Networks for Thyroid Nodule Segmentation.

Authors :
Daulatabad R
Vega R
Jaremko JL
Kapur J
Hareendranathan AR
Punithakumar K
Source :
Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference [Annu Int Conf IEEE Eng Med Biol Soc] 2021 Nov; Vol. 2021, pp. 2637-2640.
Publication Year :
2021

Abstract

Delineation of thyroid nodule boundaries is necessary for cancer risk assessment and accurate categorization of nodules. Clinicians often use manual or bounding-box approach for nodule assessment which leads to subjective results. Consequently, agreement in thyroid nodule categorization is poor even among experts. Computer-aided diagnosis systems could reduce this variability by minimizing the extent of user interaction and by providing precise nodule segmentations. In this study, we present a novel approach for effective thyroid nodule segmentation and tracking using a single user click on the region of interest. When a user clicks on an ultrasound sweep, our proposed model can predict nodule segmentation over the entire sequence of frames. Quantitative evaluations show that the proposed method out-performs the bounding box approach in terms of the dice score on a large dataset of 372 ultrasound images. The proposed approach saves expert time and reduces the potential variability in thyroid nodule assessment. The proposed one-click approach can save clinicians time required for annotating thyroid nodules within ultrasound images/sweeps. With minimal user interaction we would be able to identify the nodule boundary which can further be used for volumetric measurement and characterization of the nodule. This approach can also be extended for fast labeling of large thyroid imaging datasets suitable for training machine-learning based algorithms.

Details

Language :
English
ISSN :
2694-0604
Volume :
2021
Database :
MEDLINE
Journal :
Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Publication Type :
Academic Journal
Accession number :
34891794
Full Text :
https://doi.org/10.1109/EMBC46164.2021.9629959